42 research outputs found

    On Lookahead Strategy for Movement-based Location Update. A General Formulation

    Get PDF
    Abstract. Location management deals with the procedure to update the current location of a mobile terminal (MT) and with the procedure to deliver incoming calls to that called MT. Basically, the performance evaluation of location management procedures are dependent on the MT's mobility behavior, on the MT's cell residence time and on the call arrival process to the MT. In the open literature, the typical analysis for location management has been addressed under the assumptions of a random walk mobility model, the exponential cell sojourn time of the MT -some times relaxed to a general probability distribution functionand the exponential inter-arrival time distribution for incoming calls. However, the random walk model seems not to be valid as many mobile users follow some daily trajectories, such as from home to the working place, from the working place to the shopping center, etc. To reflect a more realistic movement pattern, we propose a directional oriented mobility model. And as a consequence of that, we also propose a lookahead procedure combined with the movement-based location update scheme, with the main idea of saving signaling traffic through the air interface. In the lookahead strategy we analytically derive closed form expressions for the mean number of location update (LU) messages triggered by the MT between two consecutive call arrivals and the paging probabilities to evaluate the paging cost under some selective paging strategies. The analysis has been carried out assuming a general cell residence time and a renewal point process for call arrivals to the MT

    Performance evaluation of framed slotted ALOHA with reservation packets and succesive interference cancelation for M2M networks

    Full text link
    [EN] Random access protocols like ALOHA have been considered for machine-to-machine (M2M) communication in future networks for their simplicity of operation. This paper evaluates the performance of a Frame Slotted-ALOHA protocol that uses reservation and data packets (FSA-RDP), in a scenario where a controller collects data packets transmitted by a finite number of M2M devices. In FSA-RDP, frames of variable duration are divided in two parts, the reservation and data subframes. During the reservation subframe, active devices send short reservation packets to the controller. The controller assigns reserved slots in the data subframe to those devices that succeeded with the reservation. At devices, the FIFO service discipline and two queue management schemes, tail drop and push-out, have been considered. When the queue size is of one packet, we develop a discrete-time Markov chain to evaluate the protocol performance, including the cumulative distribution function of the delay of data packets that are successfully transmitted. Analytical results are validated by extensive simulations. The simulation model is also used to evaluate the system performance when larger queues are used. In addition, we study the impact that implementing Successive Interference Cancellation (SIC) at the controller has on the system performance. We also evaluate the performance of implementing SIC at the controller together with Irregular Repetition Slotted ALOHA (IRSA) to send the reservation packets. Numerical results show that the protocol efficiency of FSA-RDP is between one and two orders of magnitude larger than the efficiency of conventional Frame Slotted ALOHA, when a perfect channel is assumed. In more realistic channel environments, the use of SIC brings an important performance boost.This work has been supported by the Ministry of Economy and Competitiveness of Spain through projects TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The authors would like to thank the support received from the Institute ITACA (Instituto Universitario de Tecnologias de la Informacion y Comunicaciones) at the Universitat Politecnica de Valencia, Spain. C. Portillo acknowledges the funding received from the European Union under the program Erasmus Mundus Partnerships, project EuroinkaNet, GRANT AGREEMENT NUMBER -2014 -0870/001/001, and the support received from SEP-SES (DSA/103.5/15/6629).Casares-Giner, V.; Martínez Bauset, J.; Portillo, C. (2019). Performance evaluation of framed slotted ALOHA with reservation packets and succesive interference cancelation for M2M networks. Computer Networks. 155:15-30. https://doi.org/10.1016/j.comnet.2019.02.021S153015

    SERVICIOS PORTADORES EN REDES CELULARES 2,5G Y 3G Y SU DIMENSIONADO

    Get PDF
    RESUMEN Las redes celulares 2,5G y 3G están evolucionando hacia una red totalmente IP. Una de las ventajas principales de estas redes es que ofrecen diferentes grados de calidad de servicio (QoS), mientras que una de las principales desventajas es la complejidad que supone su dimensionado. Las aportaciones más relevantes de este trabajo son dos: Primera, el estudio de la evolución de los servicios portadores en la Internet y el impacto que ello puede tener en los servicios portadores que se han definido para las redes celulares. Y segunda, el análisis de los modelos de tráfico más comunes y la identificación de las características de los modelos de tráfico que deberían ser utilizados para dimensionar las redes de acceso 2,5Gy3G. La principal conclusión del estudio es que la creciente complejidad del proceso de dimensionado de las redes celulares posiblemente requerirá del uso de herramientas automáticas, como las redes de Petri. PALABRAS RELEVANTES·      Redes celulares 2,5G y 3G.·      Servicios portadores.·      Arquitectura Diffserv.·      Modelos de tráfico.·      Dimensionado. 

    SERVICIOS PORTADORES EN REDES CELULARES 2,5G Y 3G Y SU DIMENSIONADO

    Get PDF
    RESUMEN Las redes celulares 2,5G y 3G están evolucionando hacia una red totalmente IP. Una de las ventajas principales de estas redes es que ofrecen diferentes grados de calidad de servicio (QoS), mientras que una de las principales desventajas es la complejidad que supone su dimensionado. Las aportaciones más relevantes de este trabajo son dos: Primera, el estudio de la evolución de los servicios portadores en la Internet y el impacto que ello puede tener en los servicios portadores que se han definido para las redes celulares. Y segunda, el análisis de los modelos de tráfico más comunes y la identificación de las características de los modelos de tráfico que deberían ser utilizados para dimensionar las redes de acceso 2,5Gy3G. La principal conclusión del estudio es que la creciente complejidad del proceso de dimensionado de las redes celulares posiblemente requerirá del uso de herramientas automáticas, como las redes de Petri. PALABRAS RELEVANTES·      Redes celulares 2,5G y 3G.·      Servicios portadores.·      Arquitectura Diffserv.·      Modelos de tráfico.·      Dimensionado. 

    Modulation and Coding Techniques in Wireless Communications

    Full text link
    This is a timely book on wireless communications, with twelve chapters covering theoretical results and material of standards. The first nine chapters, some 380 pages, are devoted to basic concepts on channel models, modulation, coding, equalization, MIMO techniques, and multiple access methods. The last three chapters extend up to 274 pages and cover the modern wireless communication standardsCasares Giner, V.; Martínez Zaldívar, FJ. (2012). Modulation and Coding Techniques in Wireless Communications. IEEE Communications Magazine. 50(6):13-14. doi:10.1109/MCOM.2012.6211478S131450

    Local Anchor Based Location Management Schemes for Small Cells in HetNets

    Full text link
    (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] Existing location management (LM) methods for macrocells in LTE-Advanced have tracking area list (TAL) granularity. Therefore, a user equipment (UE) triggers a location update (LU) whenever it leaves its current TAL, and it is searched through paging (PG) with TAL accuracy. However, these procedures are not well-suited for small cells (SCs). The reasons are twofold. First, dense deployments of SCs imply that paging has a low probability to be successful in the first attempt, increasing the signaling overhead in the core network (CN). Second, smaller coverage areas lead to a higher mobility among cells, increasing the signaling overhead in the CN due to LUs. In this work, two LM schemes with fine granularity are proposed. These schemes update UE's location to a local anchor (LA) in a SC or tracking area (TA) basis, respectively. By increasing the accuracy of UE's location, a significant reduction of signaling overhead in the CN due to PG is achieved. Moreover, LUs to the LA are performed through direct X2-interface links to avoid signaling overhead in the CN. A versatile mobility model is developed and closed-form expressions for UEs' mobility metrics are found to validate the proposed schemes through variations of critical parameters such as TA/TAL configuration, UE's mobility patterns and cell residence times.This work has been supported by European Commission under the FP7 S2EuNet project and the Spanish Government through project TIN2013-47272-C2-1-RPacheco-Paramo, DF.; Akyildiz, IF.; Casares Giner, V. (2016). Local Anchor Based Location Management Schemes for Small Cells in HetNets. IEEE Transactions on Mobile Computing. 15(4):883-894. https://doi.org/10.1109/TMC.2015.2431717S88389415

    Modeling of Duty-Cycled MAC Protocols for Heterogeneous WSN with Priorities

    Full text link
    [EN] Wireless Sensor Networks (WSN) have experienced an important revitalization, particularly with the arrival of Internet of Things applications. In a general sense, a WSN can be composed of different classes of nodes, having different characteristics or requirements (heterogeneity). Duty-cycling is a popular technique used in WSN, that allows nodes to sleep and wake up periodically in order to save energy. We believe that the modeling and performance evaluation of heterogeneous WSN with priorities operating in duty-cycling, being of capital importance for their correct design and successful deployment, have not been sufficiently explored. The present work presents a performance evaluation study of a WSN with these features. For a scenario with two classes of nodes composing the network, each with a different channel access priority, an approximate analytical model is developed with a pair of two-dimensional discrete-time Markov chains. Note that the same modeling approach can be used to analyze networks with a larger number of classes. Performance parameters such as average packet delay, throughput and average energy consumption are obtained. Analytical results are validated by simulation, showing accurate results. Furthermore, a new procedure to determine the energy consumption of nodes is proposed that significantly improves the accuracy of previous proposals. We provide quantitative evidence showing that the energy consumption accuracy improvement can be up to two orders of magnitudeThis work is part of the project PGC2018-094151-B-I00, which is financed by the Ministerio de Ciencia, Innovacion y Universidades (MCIU), Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MCIU/AEI/FEDER.UE). C. Portillo acknowledges the funding received from the European Union under the program Erasmus Mundus Partnerships, project EuroinkaNet, GRANT AGREEMENT NUMBER -2014 -0870/001/001, and the support received from SEP-SES (DSA/103.5/15/6629)Portillo, C.; Martínez Bauset, J.; Pla, V.; Casares-Giner, V. (2020). Modeling of Duty-Cycled MAC Protocols for Heterogeneous WSN with Priorities. Electronics. 9(3):1-16. https://doi.org/10.3390/electronics9030467S11693Gomes, D. A., & Bianchini, D. (2016). Interconnecting Wireless Sensor Networks with the Internet Using Web Services. IEEE Latin America Transactions, 14(4), 1937-1942. doi:10.1109/tla.2016.7483537Libo, Z., Tian, H., & Chunyun, G. (2019). Wireless multimedia sensor network for rape disease detections. EURASIP Journal on Wireless Communications and Networking, 2019(1). doi:10.1186/s13638-019-1468-3Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-Art Internet of Things in Protected Agriculture. Sensors, 19(8), 1833. doi:10.3390/s19081833Rajandekar, A., & Sikdar, B. (2015). A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things Journal, 2(2), 175-186. doi:10.1109/jiot.2015.2394438Dai, H.-N., Ng, K.-W., & Wu, M.-Y. (2013). On Busy-Tone Based MAC Protocol for Wireless Networks with Directional Antennas. Wireless Personal Communications, 73(3), 611-636. doi:10.1007/s11277-013-1206-9Padilla, P., Padilla, J. L., Valenzuela-Valdés, J. F., Serrán-González, J.-V., & López-Gordo, M. A. (2015). Performance Analysis of Different Link Layer Protocols in Wireless Sensor Networks (WSN). Wireless Personal Communications, 84(4), 3075-3089. doi:10.1007/s11277-015-2783-6Ye, W., Heidemann, J., & Estrin, D. (2004). Medium Access Control With Coordinated Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM Transactions on Networking, 12(3), 493-506. doi:10.1109/tnet.2004.828953Kuo, Y.-W., Li, C.-L., Jhang, J.-H., & Lin, S. (2018). Design of a Wireless Sensor Network-Based IoT Platform for Wide Area and Heterogeneous Applications. IEEE Sensors Journal, 18(12), 5187-5197. doi:10.1109/jsen.2018.2832664He, X., Liu, S., Yang, G., & Xiong, N. (2018). Achieving Efficient Data Collection in Heterogeneous Sensing WSNs. IEEE Access, 6, 63187-63199. doi:10.1109/access.2018.2876552Ortin, J., Cesana, M., Redondi, A. E. C., Canales, M., & Gallego, J. R. (2019). Analysis of Unslotted IEEE 802.15.4 Networks With Heterogeneous Traffic Classes. IEEE Wireless Communications Letters, 8(2), 380-383. doi:10.1109/lwc.2018.2873347Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535-547. doi:10.1109/49.840210Liu, R. P., Sutton, G. J., & Collings, I. B. (2010). A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load. IEEE Transactions on Wireless Communications, 9(8), 2664-2675. doi:10.1109/twc.2010.061010.091803Ou Yang, & Heinzelman, W. (2012). Modeling and Performance Analysis for Duty-Cycled MAC Protocols with Applications to S-MAC and X-MAC. IEEE Transactions on Mobile Computing, 11(6), 905-921. doi:10.1109/tmc.2011.121Martinez-Bauset, J., Guntupalli, L., & Li, F. Y. (2015). Performance Analysis of Synchronous Duty-Cycled MAC Protocols. IEEE Wireless Communications Letters, 4(5), 469-472. doi:10.1109/lwc.2015.2439267Guntupalli, L., Martinez-Bauset, J., Li, F. Y., & Weitnauer, M. A. (2017). Aggregated Packet Transmission in Duty-Cycled WSNs: Modeling and Performance Evaluation. IEEE Transactions on Vehicular Technology, 66(1), 563-579. doi:10.1109/tvt.2016.2536686Zhang, R., Moungla, H., Yu, J., & Mehaoua, A. (2017). Medium Access for Concurrent Traffic in Wireless Body Area Networks: Protocol Design and Analysis. IEEE Transactions on Vehicular Technology, 66(3), 2586-2599. doi:10.1109/tvt.2016.2573718Guntupalli, L., Martinez-Bauset, J., & Li, F. Y. (2018). Performance of frame transmissions and event-triggered sleeping in duty-cycled WSNs with error-prone wireless links. Computer Networks, 134, 215-227. doi:10.1016/j.comnet.2018.01.047(July, 2019). The State Transition Probabilities of the Two 2D-DTMC. Technical Report http://personales.upv.es/jmartine/public/2DDTMC.pdfCrossbow Technology Incorporated, San Jose, CA, USA http://www.openautomation.net/uploadsproductos/micaz-datasheet.pd

    Discrete time analysis of cognitive radio networks with imperfect sensing and saturated source of secondary users, Computer Communications

    Get PDF
    Sensing is one of the most challenging issues in cognitive radio networks. Selection of sensing parameters raises several tradeoffs between spectral efficiency, energy efficiency and interference caused to primary users (PUs). In this paper we provide representative mathematical models that can be used to analyze sensing strategies under a wide range of conditions. The activity of PUs in a licensed channel is modeled as a sequence of busy and idle periods, which is represented as an alternating Markov phase renewal process. The representation of the secondary users (SUs) behavior is also largely general: the duration of transmissions, sensing periods and the intervals between consecutive sensing periods are modeled by phase type distributions, which constitute a very versatile class of distributions. Expressions for several key performance measures in cognitive radio networks are obtained from the analysis of the model. Most notably, we derive the distribution of the length of an effective white space; the distributions of the waiting times until the SU transmits a given amount of data, through several transmission epochs uninterruptedly; and the goodput when an interrupted SU transmission has to be restarted from the beginning due to the presence of a PU. (C) 2015 Elsevier B.V. All rights reserved.The research of A. S. Alfa was partially supported by the NSERC (Natural Sciences and Engineering Research Council) of Canada under Grant G00315156. Most of the contribution of V. Pla was done while visiting the University of Manitoba. This visit was supported by the Ministerio de Educacion of Spain under Grant PR2011-0055, and by the UPV through the Programa de Apoyo a la Investigacion y Desarrollo (PAID-00-12). The research of the authors from the Universitat Politecnica de Valencia was partially supported by the Ministry of Economy and Competitiveness of Spain under Grant TIN2013-47272-C2-1-R.Alfa, AS.; Pla, V.; Martínez Bauset, J.; Casares Giner, V. (2016). Discrete time analysis of cognitive radio networks with imperfect sensing and saturated source of secondary users, Computer Communications. Computer Communications. 79:53-65. https://doi.org/10.1016/j.comcom.2015.11.012S53657

    Priority Enabled Grant-Free Access With Dynamic Slot Allocation for Heterogeneous mMTC Traffic in 5G NR Networks

    Get PDF
    Although grant-based mechanisms have been a predominant approach for wireless access for years, the additional latency required for initial handshake message exchange and the extra control overhead for packet transmissions have stimulated the emergence of grant-free (GF) transmission. GF access provides a promising mechanism for carrying low and moderate traffic with small data and fits especially well for massive machine type communications (mMTC) applications. Despite a surge of interest in GF access, how to handle heterogeneous mMTC traffic based on GF mechanisms has not been investigated in depth. In this paper, we propose a priority enabled GF access scheme which performs dynamic slot allocation in each 5G new radio subframe to devices with different priority levels on a subframe-by-subframe basis. While high priority traffic has access privilege for slot occupancy, the remaining slots in the same subframe will be allocated to low priority traffic. To evaluate the performance of the proposed scheme, we develop a two-dimensional Markov chain model which integrates these two types of traffic via a pseudo-aggregated process. Furthermore, the model is validated through simulations and the performance of the scheme is evaluated both analytically and by simulations and compared with two other GF access schemes.publishedVersio

    Performance analysis of wireless networks based on time-scale separation: A new iterative method

    Full text link
    The complexity of modern communication networks makes the solution of the Markov chains that model their traffic dynamics, and therefore, the determination of their performance parameters, computationally costly. However, a common characteristic of these networks is that they manage multiple types of traffic flows operating at different time-scales. This time-scale separation can be exploited to substantially reduce the computational cost. Following this approach, we propose a novel solution method named Absorbing Markov Chains Approximation (AMCA) based on the transient regime analysis. Briefly, we model the time the system spends in a series of subsets of states by a phase-type distribution and, for each of them, determine the probabilities of finding the system in each state of this subset until absorption. We compare the AMCA performance to that obtained by classical methods and by a recently proposed approach that aims at generalizing the conventional quasi-stationary approximation. We find that AMCA has a more predictable behavior, is applicable to a wider range of time-scale separations, and achieves higher accuracy for a given computational cost.This research has been supported in part by the Ministry of Economy and Competitiveness of Spain under Grants TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The research of L. Tello-Oquendo was supported in part by Programa de Ayudas de Investigacion y Desarrollo (PAID) of the Universitat Politecnica de Valencia.Tello Oquendo, LP.; Pla, V.; Martínez Bauset, J.; Casares Giner, V. (2016). Performance analysis of wireless networks based on time-scale separation: A new iterative method. Computer Communications. 86:40-48. https://doi.org/10.1016/j.comcom.2016.04.004S40488
    corecore