93 research outputs found

    Charm and Bottom Masses from Sum Rules with a Convergence Test

    Full text link
    In this talk we discuss results of a new extraction of the MS-bar charm quark mass using relativistic QCD sum rules at O(as**3) based on moments of the vector and the pseudoscalar current correlators and using the available experimental measurements from e+e- collisions and lattice results, respectively. The analysis of the perturbative uncertainties is based on different implementations of the perturbative series and on independent variations of the renormalization scales for the mass and the strong coupling following a work we carried out earlier. Accounting for the perturbative series that result from this double scale variation is crucial since some of the series can exhibit extraordinarily small scale dependence, if the two scales are set equal. The new aspect of the work reported here adresses the problem that double scale variation might also lead to an overestimate of the perturbative uncertainties. We supplement the analysis by a convergence test that allows to quantify the overall convergence of QCD perturbation theory for each moment and to discard series that are artificially spoiled by specific choices of the renormalization scales. We also apply the new method to an extraction of the MS-bar bottom quark mass using experimental moments that account for a modeling uncertainty associated to the continuum region where no experimental data is available. We obtain m_c(m_c) = 1.287 +- 0.020 GeV and m_b(m_b) = 4.167 +- 0.023 GeV.Comment: 6 pages, 2 figures. Presented at the International Workshop on the CKM Unitarity Triangle Vienna, Austria, September 8-12, 201

    Hadron Mass Effects in Power Corrections to Event Shapes

    Full text link
    We study the effect of hadron masses on the leading power correction of dijet event-shape distributions. We define the transverse velocity operator, that describes the effects of hadron masses. It depends on the "transverse velocity" r, which is different from one only for non-vanishing hadron masses. We find that hadron-mass effects in general break universality. However we provide a simple method to identify universality classes of event shapes with a common power correction. We also compute the anomalous dimension of the power correction and the structure of the corresponding Wilson coefficient, finding a nontrivial result.Comment: 8 pages, 3 figures, 2 tables, to appear in the proceedings of Xth Quark Confinement and the Hadron Spectru

    Bottom and Charm Mass Determinations with a Convergence Test

    Full text link
    We present new determinations of the MS-bar charm quark mass using relativistic QCD sum rules at O(alpha_s^3) from the moments of the vector and the pseudoscalar current correlators. We use available experimental measurements from e+e- collisions and lattice simulation results, respectively. Our analysis of the theoretical uncertainties is based on different implementations of the perturbative series and on independent variations of the renormalization scales for the mass and the strong coupling. Taking into account the resulting set of series to estimate perturbative uncertainties is crucial, since some ways to treat the perturbative expansion can exhibit extraordinarily small scale dependence when the two scales are set equal. As an additional refinement, we address the issue that double scale variation could overestimate the perturbative uncertainties. We supplement the analysis with a test that quantifies the convergence rate of each perturbative series by a single number. We find that this convergence test allows to determine an overall and average convergence rate that is characteristic for the series expansions of each moment, and to discard those series for which the convergence rate is significantly worse. We obtain mc(mc) = 1.288 +- 0.020 GeV from the vector correlator. The method is also applied to the extraction of the MS-bar bottom quark mass from the vector correlator. We compute the experimental moments including a modeling uncertainty associated to the continuum region where no data is available. We obtain mb(mb) = 4.176 +- 0.023 GeV.Comment: 53 pages, 16 figures, 19 tables; v2 typos fixed, references added, modification of section 6.3, results for bottom moments and bottom mass updated, matches published versio

    Calibrating the Na\"ive Cornell Model with NRQCD

    Full text link
    Along the years, the Cornell Model has been extraordinarily successful in describing hadronic phenomenology, in particular in physical situations for which an effective theory of the strong interactions such as NRQCD cannot be applied. As a consequence of its achievements, a relevant question is whether its model parameters can somehow be related to fundamental constants of QCD. We shall give a first answer in this article by comparing the predictions of both approaches. Building on results from a previous study on heavy meson spectroscopy, we calibrate the Cornell model employing NRQCD predictions for the lowest-lying bottomonium states up to N3^3LO, in which the bottom mass is varied within a wide range. We find that the Cornell model mass parameter can be identified, within perturbative uncertainties, with the MSR mass at the scale R=1 R = 1\,GeV. This identification holds for any value of αs\alpha_s or the bottom mass, and for all perturbative orders investigated. Furthermore, we show that: a) the "string tension" parameter is independent of the bottom mass, and b) the Coulomb strength κ\kappa of the Cornell model can be related to the QCD strong coupling constant αs\alpha_s at a characteristic non-relativistic scale. We also show how to remove the u=1/2u=1/2 renormalon of the static QCD potential and sum-up large logs related to the renormalon subtraction by switching to the low-scale, short-distance MSR mass, and using R-evolution. Our R-improved expression for the static potential remains independent of the heavy quark mass value and agrees with lattice QCD results for values of the radius as large as 0.8 0.8\,fm, and with the Cornell model potential at long distances. Finally we show that for moderate values of rr, the R-improved NRQCD and Cornell static potentials are in head-on agreement.Comment: 22 pages, 13 figures, 3 table

    Chiral Perturbation Theory with tensor sources

    Get PDF
    We construct the most general chirally-invariant Lagrangian for mesons in the presence of external sources coupled to the tensor current \bar{\psi}\sigma_{\mu\nu}\psi. In order to have only even terms in the chiral expansion, we consider the new source of O(p^2). With this choice, we build the even-parity effective Lagrangian up to the p^6-order (NLO). While there are only 4 new terms at the p^4-order, at p^6-order we find 78 terms for n_f=2 and 113 terms for n_f=3. We provide a detailed discussion on the different mechanisms that ensure that our final set of operators is complete and non-redundant. We also examine the odd-parity sector, to conclude that the first operators appear at the p^8-order (NNLO).Comment: 23 pages, one figure; typos corrected, one paragraph added, new section added, references added, published versio
    • …
    corecore