1,078 research outputs found
N-ality and topology at finite temperature
We study the spectrum of confining strings in SU(3) pure gauge theory, in
different representations of the gauge group. Our results provide direct
evidence that the string spectrum agrees with predictions based on n-ality. We
also investigate the large-N behavior of the topological susceptibility
in four-dimensional SU(N) gauge theories at finite temperature, and in
particular across the finite-temperature transition at . The results
indicate that has a nonvanishing large-N limit for , as at T=0,
and that the topological properties remain substantially unchanged in the
low-temperature phase. On the other hand, above the deconfinement phase
transition, shows a large suppression. The comparison between the data
for N=4 and N=6 hints at a vanishing large-N limit for .Comment: 3 pages, 2 figures. Presented at Lattice2004(topology
Non-linear analysis of geomagnetic time series from Etna volcano
International audienceAn intensive nonlinear analysis of geomagnetic time series from the magnetic network on Etna volcano was carried out to investigate the dynamical behavior of magnetic anomalies in volcanic areas. The short-term predictability of the geomagnetic time series was evaluated to establish a possible low-dimensional deterministic dynamics. We estimated the predictive ability of both a nonlinear forecasting technique and a global autoregressive model by comparing the prediction errors. Our findings highlight that volcanomagnetic signals are the result of complex processes that cannot easily be predicted. There is slight evidence based on nonlinear predictions, that the geomagnetic time series are to be governed by many variables, whose time evolution could be better regarded as arising from complex high dimensional processes
Quantum dynamics and entanglement of a 1D Fermi gas released from a trap
We investigate the entanglement properties of the nonequilibrium dynamics of
one-dimensional noninteracting Fermi gases released from a trap. The gas of N
particles is initially in the ground state within hard-wall or harmonic traps,
then it expands after dropping the trap. We compute the time dependence of the
von Neumann and Renyi entanglement entropies and the particle fluctuations of
spatial intervals around the original trap, in the limit of a large number N of
particles. The results for these observables apply to one-dimensional gases of
impenetrable bosons as well.
We identify different dynamical regimes at small and large times, depending
also on the initial condition, whether it is that of a hard-wall or harmonic
trap. In particular, we analytically show that the expansion from hard-wall
traps is characterized by the asymptotic small-time behavior of the von Neumann entanglement entropy, and the relation
where V is the particle variance, which are analogous to
the equilibrium behaviors whose leading logarithms are essentially determined
by the corresponding conformal field theory with central charge . The time
dependence of the entanglement entropy of extended regions during the expansion
from harmonic traps shows the remarkable property that it can be expressed as a
global time-dependent rescaling of the space dependence of the initial
equilibrium entanglement entropy.Comment: 19 pages, 18 fig
Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition?
Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilitie
Self-consistent models of cuspy triaxial galaxies with dark matter haloes
We have constructed realistic, self-consistent models of triaxial elliptical
galaxies embedded in triaxial dark matter haloes. We examined three different
models for the shape of the dark matter halo: (i) the same axis ratios as the
luminous matter (0.7:0.86:1); (ii) a more prolate shape (0.5:0.66:1); (iii) a
more oblate shape (0.7:0.93:1). The models were obtained by means of the
standard orbital superposition technique introduced by Schwarzschild.
Self-consistent solutions were found in each of the three cases. Chaotic orbits
were found to be important in all of the models,and their presence was shown to
imply a possible slow evolution of the shapes of the haloes. Our results
demonstrate for the first time that triaxial dark matter haloes can co-exist
with triaxial galaxies.Comment: Latex paper based on the AASTEX format, 20 pages, 11 figures, 2
tables. Paper submitted to Ap
Modelling lava flows by Cellular Nonlinear Networks (CNN): preliminary results
International audienceThe forecasting of lava flow paths is a complex problem in which temperature, rheology and flux-rate all vary with space and time. The problem is more difficult to solve when lava runs down a real topography, considering that the relations between characteristic parameters of flow are typically nonlinear. An alternative approach to this problem that does not use standard differential equation methods is Cellular Nonlinear Networks (CNNs). The CNN paradigm is a natural and flexible framework for describing locally interconnected, simple, dynamic systems that have a lattice-like structure. They consist of arrays of essentially simple, nonlinearly coupled dynamic circuits containing linear and non-linear elements able to process large amounts of information in real time. Two different approaches have been implemented in simulating some lava flows. Firstly, a typical technique of the CNNs to analyze spatio-temporal phenomena (as Autowaves) in 2-D and in 3-D has been utilized. Secondly, the CNNs have been used as solvers of partial differential equations of the Navier-Stokes treatment of Newtonian flow
Corrections to scaling in multicomponent polymer solutions
We calculate the correction-to-scaling exponent that characterizes
the approach to the scaling limit in multicomponent polymer solutions. A direct
Monte Carlo determination of in a system of interacting
self-avoiding walks gives . A field-theory analysis based
on five- and six-loop perturbative series leads to . We
also verify the renormalization-group predictions for the scaling behavior
close to the ideal-mixing point.Comment: 21 page
Paediatric non-alcoholic fatty liver disease: impact on patients and mothers' quality of life
Background: Non-alcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver in adults and is currently the primary form of chronic liver disease in children and adolescents. However, the psychological outcome (i.e. the behavioural problems that can in turn be related to psychiatric conditions, like anxiety and mood disorders, or lower quality of life) in children and adolescents suffering of NAFLD has not been extensively explored in the literature. Objectives: The present study aims at evaluating the emotional and behavioural profile in children suffering from NAFLD and the quality of life in their mothers. Patients and Methods: A total of 57 children (18 females/39 males) with NAFLD were compared to 39 age-matched control children (25 females/14 males). All participants were submitted to the following psychological tools to assess behavior, mood, and anxiety: the Multidimensional Anxiety Scale for Children (MASC), the Child Behavior Checklist (CBCL), and the Children's Depression Inventory (CDI). Moreover, the mothers of 40 NAFLD and 39 control children completed the World Health Organization Quality of Life-BREF (WHOQOL-BREF) questionnaire. Results: NAFLD children scored significantly higher as compared to control children in MASC (P = 0.001) and CDI total (P < 0.001) scales. The CBCL also revealed significantly higher scores for NAFLD children in total problems (P = 0.046), internalizing symptoms (P = 0.000) and somatic complaints (P < 0.001). The WHOQOL-BREF revealed significantly lower scores for the mothers of NAFLD children in the overall perception of the quality of life (P < 0.001), and in the "relationships" domain (P = 0.023). Conclusions: Increased emotional and behavioural problems were detected in children with NAFLD as compared to healthy control children, together with an overall decrease in their mothers' quality of life. These results support the idea that these patients may benefit from a psychological intervention, ideally involving both children and parents, whose quality of life is likely negatively affected by this disease
- …