39 research outputs found

    A Surrogate Model Assisted Evolutionary Algorithm for Computationally Expensive Design Optimization Problems with Discrete Variables

    Get PDF
    Real-world computationally expensive design optimization problems with discrete variables pose challenges to surrogate-based optimization methods in terms of both efficiency and search ability. In this paper, a new method is introduced, called surrogate model-aware differential evolution with neighbourhood exploration, which has two phases. The first phase adopts a surrogate-based optimization method based on efficient surrogate model-aware search framework, the goal of which is to reach at least the neighbourhood of the global optimum. In the second phase, a neighbourhood exploration method for discrete variables is developed and collaborates with the first phase to further improve the obtained solutions. Empirical studies on various benchmark problems and a real-world network-on-chip design optimization problem show the combined advantages in terms of efficiency and search ability: when only a very limited number of exact evaluations are allowed, the proposed method is not slower than one of the most efficient methods for the targeted problem; when more evaluations are allowed, the proposed method can obtain results with comparable quality compared to standard differential evolution, but it requires only 1% to 30% of exact function evaluations

    A Surrogate Model Assisted Evolutionary Algorithm for Computationally Expensive Design Optimization Problems with Discrete Variables

    Get PDF
    Real-world computationally expensive design optimization problems with discrete variables pose challenges to surrogate-based optimization methods in terms of both efficiency and search ability. In this paper, a new method is introduced, called surrogate model-aware differential evolution with neighbourhood exploration, which has two phases. The first phase adopts a surrogate-based optimization method based on efficient surrogate model-aware search framework, the goal of which is to reach at least the neighbourhood of the global optimum. In the second phase, a neighbourhood exploration method for discrete variables is developed and collaborates with the first phase to further improve the obtained solutions. Empirical studies on various benchmark problems and a real-world network-on-chip design optimization problem show the combined advantages in terms of efficiency and search ability: when only a very limited number of exact evaluations are allowed, the proposed method is not slower than one of the most efficient methods for the targeted problem; when more evaluations are allowed, the proposed method can obtain results with comparable quality compared to standard differential evolution, but it requires only 1% to 30% of exact function evaluations

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore