36 research outputs found

    Identification of prognostic and susceptibility markers in chronic myeloid leukemia using next generation sequencing

    Get PDF
    Background: Incidence of Chronic Myeloid Leukemia (CML) is continuously increasing and expected to reach 100,000 patients every year by 2030. Though the discovery of Imatinib Mesylate (IM) has brought a paradigm shift in CML treatment, 20% patients show resistance to this tyrosine kinase inhibiter (TKI). Therefore, it is important to identify markers, which can predict the occurrence and prognosis of CML. Clinical Exome Sequencing, panel of more than 4800 genes, was performed in CML patients to identify prognostic and susceptibility markers in CML.Methods: Enrolled CML patients (n=18) were segregated as IM responders (n=10) and IM failures (n=8) as per European Leukemia Net (ELN), 2013 guidelines. Healthy controls (n=5) were also enrolled. DNA from blood of subjects was subjected to Next Generation Sequencing. Rare mutations present in one patient group and absent in another group were considered as prognostic markers, whereas mutations present in more than 50% patients were considered as susceptibility markers.Result: Mutations in genes associated with cancer related functions were found in different patient groups. Four variants: rs116201358, rs4014596, rs52897880 and rs2274329 in C8A, UNC93B1, APOH and CA6 genes, respectively, were present in IM responders; whereas rs4945 in MFGE8 was present in IM failures. Mutations in HLA-DRB1 (rs17878951), HLA-DRB5 (rs137863146), RPHN2 (rs193179333), CYP2F1 (rs116958555), KCNJ12 (rs76684759) and FUT3 (rs151218854) were present as susceptibility markers.Conclusion: The potential genetic markers discovered in this study can help in predicting response to IM as frontline therapy. Susceptibility markers may also be used as panel for individuals prone to have CML.Keywords: Chronic Myeloid Leukemia, Genetic Markers, Next Generation Sequencing (NGS

    Prevalence, Distribution and Functional Significance of the −237C to T Polymorphism in the IL-12Rβ2 Promoter in Indian Tuberculosis Patients

    Get PDF
    Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence, the −237 polymorphic site in the 5′ promoter region of the IL-12Rβ2 (SNP ID: rs11810249) gene associated with the AP-4 transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46 pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele predominated among patients, (93.4%, 43/46), and in all volunteers and contacts screened, but the T allele was exclusively limited to patients, (6.5%, 3/46). The functional impact of this polymorphism on transcriptional activity was assessed by Luciferase-reporter and electrophoretic mobility shift assays (EMSA). Luciferase-reporter assays showed a significant reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele construct (pGIL-12Rb2-T), in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C allele construct (pGIL-12Rb2-C). Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4 transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3) harboring the T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05). These observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA assays. The reduced expression of IL-12Rβ2 transcripts in 8 patients despite having the C allele was attributed to the predominant over expression of the suppressors (IL-4 and GATA-3) and reduced expression of enhancers (IFN-α) of IL-12Rβ2 transcripts. The 17 high IL-12Rβ2 mRNA expressers had significantly elevated IFN-α mRNA levels compared to low expressers and volunteers. Notwithstanding the presence of high levels of IL-12Rβ2 mRNA in these patients elevated IFN-α expression could modulate their immune responses to Mycobacterium tuberculosis

    A Non-Q/N-Rich Prion Domain of a Foreign Prion, [Het-s], Can Propagate as a Prion in Yeast

    No full text
    International audiencePrions are self-propagating, infectious aggregates of misfolded proteins. The mammalian prion, PrP(Sc), causes fatal neurodegenerative disorders. Fungi also have prions. While yeast prions depend upon glutamine/asparagine (Q/N)-rich regions, the Podospora anserina HET-s and PrP prion proteins lack such sequences. Nonetheless, we show that the HET-s prion domain fused to GFP propagates as a prion in yeast. Analogously to native yeast prions, transient overexpression of the HET-s fusion induces ring-like aggregates that propagate in daughter cells as cytoplasmically inherited, detergent-resistant dot aggregates. Efficient dot propagation, but not ring formation, is dependent upon the Hsp104 chaperone. The yeast prion [PIN(+)] enhances HET-s ring formation, suggesting that prions with and without Q/N-rich regions interact. Finally, HET-s aggregates propagated in yeast are infectious when introduced into Podospora. Taken together, these results demonstrate prion propagation in a truly foreign host. Since yeast can host non-Q/N-rich prions, such native yeast prions may exist

    Q-Rich Yeast Prion [PSI+] Accelerates Aggregation of Transthyretin, a Non-Q-Rich Human Protein

    Get PDF
    Interactions amongst different amyloid proteins have been proposed as a probable mechanism of aggregation and thus an important risk factor for the onset as well as progression of various neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. Evidences suggest that transthyretin (TTR), a plasma protein associated with transthyretin amyloidosis or familial polyneuropathy (FAP) interacts with heterologous amyloid proteins including amyloid beta and islet amyloid polypeptide. In addition, recent clinical studies have revealed the presence of systemic polyneuropathy associated with FAP mutations in patients with spinocerebral ataxia, amyotrophic lateral sclerosis, and new familial systematic prion disease. Hence, it is important to investigate the interactions amongst different amyloid proteins to gain better insight into the pathology of amyloid disorders. Yeast has been an excellent model system to study interaction/ cross-seeding between heterologous amyloid proteins, more because of presence of endogenous yeast prions. Here, we examined interactions of non-glutamine (non-Q)-rich transthyretin, with glutamine (Q)-rich yeast prion protein Sup35. We established aggregation of an engineered double (F87M/L110M) mutant M-TTR-GFP in yeast. This mutant is monomeric and readily formed aggregates compared to WT-TTR-GFP in yeast at acidic pH. Interestingly, aggregation of M-TTR-GFP was significantly enhanced in presence of [PSI+], an endogenous prion form of Sup35. Different variants of [PSI+] seeded M-TTR-GFP with different efficiencies and curing of [PSI+] (losing the prion form) in these strains reduced aggregation. Moreover, overexpression of prion domain of Sup35 fused to RFP (NM-RFP) also increased M-TTR-GFP aggregation. M-TTR-GFP and NM-RFP aggregates co-localized in perivacuolar and juxtranuclear region. Sup35 protein was even immunocaptured in M-TTR-GFP aggregates. However, M-TTR-GFP overexpression did not induce Sup35 aggregation. Thus, it appears to be a unidirectional interaction between these two amyloid proteins. However, no affect on M-TTR-GFP aggregation was observed due to another yeast prion, [PIN+]. Our findings thus show the molecular interaction of transthyretin with yeast prion and support that sequence similarity is not the prime requirement for heterologous amyloid interactions

    Clinical and genetic analysis of A father-son duo with monomelic amyotrophy: Case report

    No full text
    Monomelic Amyotrophy (MMA) is a rare neurological disorder restricted to one upper limb, predominantly affecting young males with an unknown aetiopathogenesis. We report a familial case of father-son duo affected by MMA. Whole exome sequencing identified genetic variations in SLIT1, RYR3 and ARPP21 involved in axon guidance, calcium homeostasis and regulation of calmodulin signaling respectively. This is the first attempt to define genetic modifiers associated with MMA from India and advocates to extend genetic screening to a larger cohort. Deciphering the functional consequences of variations in these genes will be crucial for unravelling the pathogenesis of MMA

    Integration Host Factor of <i>Mycobacterium tuberculosis</i>, mIHF, Compacts DNA by a Bending Mechanism

    Get PDF
    <div><p>The bacterial chromosomal DNA is folded into a compact structure called as ‘nucleoid’ so that the bacterial genome can be accommodated inside the cell. The shape and size of the nucleoid are determined by several factors including DNA supercoiling, macromolecular crowding and nucleoid associated proteins (NAPs). NAPs bind to different sites of the genome in sequence specific or non-sequence specific manner and play an important role in DNA compaction as well as regulation. Until recently, few NAPs have been discovered in mycobacteria owing to poor sequence similarities with other histone-like proteins of eubacteria. Several putative NAPs have now been identified in Mycobacteria on the basis of enriched basic residues or histone-like “PAKK” motifs. Here, we investigate mycobacterial Integration Host Factor (mIHF) for its architectural roles as a NAP using atomic force microscopy and DNA compaction experiments. We demonstrate that mIHF binds DNA in a non-sequence specific manner and compacts it by a DNA bending mechanism. AFM experiments also indicate a dual architectural role for mIHF in DNA compaction as well as relaxation. These results suggest a convergent evolution in the mechanism of <i>E. coli</i> and mycobacterial IHF in DNA compaction.</p></div

    Curcumin Prevents Formation of Polyglutamine Aggregates by Inhibiting Vps36, a Component of the ESCRT-II Complex

    Get PDF
    <div><p>Small molecules with antioxidative properties have been implicated in amyloid disorders. Curcumin is the active ingredient present in turmeric and known for several biological and medicinal effects. Adequate evidence substantiates the importance of curcumin in Alzheimer's disease and recent evidence suggests its role in Prion and Parkinson's disease. However, contradictory effects have been suggested for Huntington's disease. This difference provided a compelling reason to investigate the effect of curcumin on glutamine-rich (Q-rich) and non-glutamine-rich (non Q-rich) amyloid aggregates in the well established yeast model system. Curcumin significantly inhibited the formation of htt72Q-GFP (a Q-rich) and Het-s-GFP (a non Q-rich) aggregates in yeast. We show that curcumin prevents htt72Q-GFP aggregation by down regulating Vps36, a component of the ESCRT-II (Endosomal sorting complex required for transport). Moreover, curcumin disrupted the htt72Q-GFP aggregates that were pre-formed in yeast and cured the yeast prion, [<em>PSI</em><sup>+</sup>].</p> </div
    corecore