7 research outputs found

    The Alzheimer’s disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway

    Get PDF
    Background Triggering receptor expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) are genetically linked to Alzheimer’s disease. Here, we investigated whether human ApoE mediates signal transduction through human and murine TREM2 and sought to identify a TREM2-binding domain in human ApoE. Methods To investigate cell signaling through TREM2, a cell line was used which expressed an NFAT-inducible β-galactosidase reporter and human or murine TREM2, fused to CD8 transmembrane and CD3ζ intracellular signaling domains. ELISA-based binding assays were used to determine binding affinities of human ApoE isoforms to human TREM2 and to identify a TREM2-binding domain in ApoE. Results ApoE was found to be an agonist to human TREM2 with EC50 in the low nM range, and to murine TREM2 with reduced potency. In the reporter cells, TREM2 expression was lower than in nontransgenic mouse brain. Human ApoE isoforms ε2, ε3, and ε4 bound to human TREM2 with K d in the low nM range. The binding was displaced by an ApoE-mimetic peptide (amino acids 130–149). Conclusions An ApoE-mediated dose-dependent signal transduction through TREM2 in reporter cells was demonstrated, and a TREM2-binding region in ApoE was identified. The relevance of an ApoE-TREM2 receptor signaling pathway to Alzheimer’s disease is discussed

    Analyzing microglial-associated Aβ in Alzheimer’s disease transgenic mice with a novel mid-domain Aβ-antibody

    No full text
    The mechanisms of amyloid-β (Aβ)-degradation and clearance in Alzheimer’s disease (AD) pathogenesis have been relatively little studied. Short Aβ-fragments form by enzymatic cleavage and alternate amyloid-beta precursor protein (APP)-processing. Here we characterized a novel polyclonal Aβ-antibody raised against an Aβ mid-domain and used it to investigate microglial Aβ-uptake in situ by microscopy at the light- and ultrastructural levels. The rabbit Aβ-mid-domain antibody (ab338), raised against the mid-domain amino acids 21–34 (Aβ21–34), was characterized with biochemical and histological techniques. To identify the epitope in Aβ recognized by ab338, solid phase and solution binding data were compared with peptide folding scores as calculated with the Tango software. The ab338 antibody displayed high average affinity (KD: 6.2 × 10−10 M) and showed preference for C-terminal truncated Aβ-peptides ending at amino acid 34 and Aβ-mid domain peptides with high scores of β-turn structure. In transgenic APP-mouse brain, ab338 labelled amyloid plaques and detected Aβ-fragments in microglia at the ultra- and light microscopic levels. This reinforces a role of microglia/macrophages in Aβ-clearance in vivo. The ab338 antibody might be a valuable tool to study Aβ-clearance by microglial uptake and Aβ-mid-domain peptides generated by enzymatic degradation and alternate production

    Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease

    Get PDF
    Background Alzheimer’s disease (AD) neuropathology is associated with neuroinflammation, but there are few useful biomarkers. Mutant variants of triggering receptor expressed on myeloid cells 2 (TREM2) have recently been linked to late-onset AD and other neurodegenerative disorders. TREM2, a microglial receptor, is involved in innate immunity. A cleaved fragment, soluble TREM2 (sTREM2), is present in the cerebrospinal fluid (CSF). Methods We developed and used a novel enzyme-linked immunosorbent assay to investigate the potential value of CSF sTREM2 as an AD biomarker in two independent cohorts: an AD/mild cognitive impairment (MCI)/control cohort (n = 100) and an AD/control cohort (n = 50). Results We found no significant difference in sTREM2 levels between groups of controls and patients with AD or MCI. However, among all controls there was a positive correlation between sTREM2 and age (Spearman rho = 0.50; p < 0.001; n = 75). In the AD/MCI/control cohort, CSF sTREM2 correlated positively with total Tau (T-tau) (Spearman rho 0.57; p < 0.001; n = 50), phosphorylated Tau (P-tau) (Spearman rho 0.63; p < 0.001; n = 50) and amyloid-β1–42 (Aβ42) (Spearman rho 0.35; p = 0.01; n = 50) in control subjects. Among controls with a CSF Aβ42 above a cut-off value (700 pg/ml) in this cohort, the positive correlation between sTREM2 and Aβ42 was stronger (Spearman rho = 0.44; p = 0.002; n = 46). Conclusions sTREM2 in CSF correlates with aging in controls, and with the neurodegenerative markers CSF T-tau/P-tau among controls who are negative for AD CSF core biomarkers Aβ42, T-tau or P-tau

    Additional file 1: of Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease

    No full text
    Figure S1 showing ELISA validation; Figure S2 showing freeze–thaw cycles; Figure S3 showing PET imaging versus CSF Aβ42 in patients; Figure S4 showing a scatter plot of CSF sTREM2 in relation to CSF levels of Aβ38 MSD (A), Aβ40 MSD (B) and Aβ42 MSD (C) in the Norwegian AD/MCI/control cohort; Figure S5 showing a scatter plot of different CSF Aβ measures with Innotest® and MSD; Figure S6 showing a scatter plot of CSF sTREM2 in relation to levels of Aβ42 (A), T-tau (B) and P-tau (C) in CSF in the Swedish AD/control cohort; Figure S7 showing a surface plot of CSF sTREM2 in relation to age and Aβ38 MSD (A) and in relation to age and Aβ40 MSD (B) in controls; Table S1 presenting correlations between different CSF Aβ measures (Aβ42 Innotest®, Aβ38 MSD, Aβ40 MSD and Aβ42 MSD); and Table S2 presenting correlation analyses between different CSF sTREM2 and age and biomarkers (Aβ42 Innotest®, Aβ38 MSD, Aβ40 MSD and Aβ42 MSD, T-tau and P-tau). (PDF 647 kb
    corecore