1,695 research outputs found

    Produtividade econômica e componentes da produção de espigas verdes de milho em função da adubação nitrogenada.

    Get PDF
    Foi avaliado, durante dois anos, o efeito de doses de nitrogênio (N) na produtividade de espigas verdes de milho e em componentes da sua produção. Cinco doses de N (0, 60, 120, 180 e 240 kg ha-1) aplicadas em cobertura foram testadas num delineamento experimental de blocos casualizados, com quatro repetições. Foram avaliadas a produção e o número de espigas comerciais com palha por hectare, peso das espigas com e sem palha, comprimento e diâmetro de espigas sem palha e relação espiga com palha/palha. Aumentos na produtividade de espigas comerciais com palha com a aplicação de N foram encontrados, sendo estimadas as máximas produtividades de 13,52 t ha-1 com a dose de 157 kg ha-1 de N (primeiro ano) e de 14,86 t ha-1 com a dose de 177 kg ha-1 de N (segundo ano). Os aumentos na produtividade de espigas não foram devido aos aumentos do número de espigas por área e do comprimento destas, que não foram afetados pela adubação nitrogenada. Diferentemente da relação espiga/palha, o peso e o diâmetro das espigas foram influenciados pela elevação das doses de N. Foi proposta uma tabela de recomendação de adubação nitrogenada nos moldes de preços preestabelecidos de N e de espigas

    Spectroscopic Observations of Optically Selected Clusters of Galaxies from the Palomar Distant Cluster Survey

    Get PDF
    We have conducted a redshift survey of sixteen cluster candidates from the Palomar Distant Cluster Survey (PDCS) to determine both the density of PDCS clusters and the accuracy of the estimated redshifts presented in the PDCS catalog (Postman et. al. 1996). We find that the matched-filter redshift estimate presented in the PDCS has an error sigma_z = 0.06 in the redshift range 0.1 < z < 0.35 based on eight cluster candidates with three or more concordant galaxy redshifts. We measure the low redshift (0.1 < z < 0.35) space density of PDCS clusters to be 31.3^{+30.5}_{-17.1} * E-06 h^3 Mpc^-3 (68% confidence limits for a Poisson distribution) for Richness Class 1 systems. We find a tentative space density of 10.4^{+23.4}_{-8.4}* E-06 h^3 Mpc^-3 for Richness Class 2 clusters. These densities compare favorably with those found for the whole of the PDCS and support the finding that the space density of clusters in the PDCS is a factor of ~5 above that of clusters in the Abell catalog (Abell 1958; Abell, Corwin, and Olowin 1989). These new space density measurements were derived as independently as possible from the original PDCS analysis and therefore, demonstrate the robustness of the original work. Based on our survey, we conclude that the PDCS matched-filter algorithm is successful in detecting real clusters and in estimating their true redshifts in the redshift range we surveyed.Comment: 23 pages with 4 figures and 3 seperate tables. To be published in the November Issue of the Astronomical Journa

    A Serendipitous Galaxy Cluster Survey with XMM: Expected Catalogue Properties and Scientific Applications

    Get PDF
    This paper describes a serendipitous galaxy cluster survey that we plan to conduct with the XMM X-ray satellite. We have modeled the expected properties of such a survey for three different cosmological models, using an extended Press-Schechter (Press & Schechter 1974) formalism, combined with a detailed characterization of the expected capabilities of the EPIC camera on board XMM. We estimate that, over the ten year design lifetime of XMM, the EPIC camera will image a total of ~800 square degrees in fields suitable for the serendipitous detection of clusters of galaxies. For the presently-favored low-density model with a cosmological constant, our simulations predict that this survey area would yield a catalogue of more than 8000 clusters, ranging from poor to very rich systems, with around 750 detections above z=1. A low-density open Universe yields similar numbers, though with a different redshift distribution, while a critical-density Universe gives considerably fewer clusters. This dependence of catalogue properties on cosmology means that the proposed survey will place strong constraints on the values of Omega-Matter and Omega-Lambda. The survey would also facilitate a variety of follow-up projects, including the quantification of evolution in the cluster X-ray luminosity-temperature relation, the study of high-redshift galaxies via gravitational lensing, follow-up observations of the Sunyaev-Zel'dovich effect and foreground analyses of cosmic microwave background maps.Comment: Accepted to ApJ. Minor changes, e.g. presentation of temperature errors as a figure (rather than as a table). Latex (20 pages, 6 figures, uses emulateapj.sty

    Mass Profiles of the Typical Relaxed Galaxy Clusters A2199 and A496

    Full text link
    We present maps and radial profiles of the gas temperature in the nearby galaxy clusters A2199 and A496, which have the most accurate ASCA spectral data for all hot clusters. These clusters are relaxed and can provide reliable X-ray mass measurements under the assumption of hydrostatic equilibrium. The cluster average temperatures corrected for the presence of cooling flows are 4.8+-0.2 keV and 4.7+-0.2 keV (90% errors), respectively. Outside the central cooling flow regions, the radial temperature profiles are similar to those of the majority of nearby relaxed clusters. They are accurately described by polytropic models with gamma=1.17+-0.07 for A2199 and gamma=1.24+-0.09 for A496. We use these polytropic models to derive accurate total mass profiles. Within r=0.5/h Mpc, which corresponds to a radius of overdensity 1000, the total mass values are 1.45+-0.15 10^14 /h Msun and 1.55+-0.15 10^14 /h Msun. These values are 10% lower than those obtained assuming constant temperature. The values inside a gas core radius (0.07-0.13/h Mpc) are a factor of >1.5 higher than the isothermal values. The gas mass fraction increases with radius (by a factor of 3 between the X-ray core radius and r_1000) and at r_1000 reaches values of 0.057+-0.005 and 0.056+-0.006 h^-3/2 for the two clusters, respectively. Our mass profiles within r_1000 are remarkably well approximated by the NFW "universal" profile. Since A2199 and A496 are typical relaxed clusters, the above findings should be relevant for most such systems. In particular, the similarity of the temperature profiles in nearby clusters appears to reflect the underlying "universal" dark matter profile. The upward revision of mass at small radii will resolve most of the discrepancy between the X-ray and strong lensing mass estimates. (Abridged)Comment: Latex, 9 pages, 6 figures, uses emulateapj.sty. Submitted to Ap

    Inflationary cosmology with scalar field and radiation

    Get PDF
    We present a simple, exact and self-consistent cosmology with a phenomenological model of quantum creation of radiation due to decay of the scalar field. The decay drives a non-isentropic inflationary epoch, which exits smoothly to the radiation era, without reheating. The initial vacuum for radiation is a regular Minkowski vacuum. The created radiation obeys standard thermodynamic laws, and the total entropy produced is consistent with the accepted value. We analyze the difference between the present model and a model with decaying cosmological constant previously considered.Comment: 13 pages Latex; to appear Gen. Rel. Gra

    The WARPS survey: III. The discovery of an X-ray luminous galaxy cluster at z=0.833 and the impact of X-ray substructure on cluster abundance measurements

    Full text link
    The WARPS team reviews the properties and history of discovery of ClJ0152.7-1357, an X-ray luminous, rich cluster of galaxies at z=0.833. At L_X = 8 x 10^44 h^(-2) erg/s (0.5-2.0 keV) ClJ0152.7-1357 is the most X-ray luminous cluster known at redshifts z>0.55. The high X-ray luminosity of the system suggests that massive clusters may begin to form at redshifts considerably greater than unity. This scenario is supported by the high degree of optical and X-ray substructure in ClJ0152.7-1357, which is similarly complex as that of other X-ray selected distant clusters and consistent with the picture of cluster formation by mass infall along large-scale filaments. X-ray emission from ClJ0152.7-1357 was detected already in 1980 with the EINSTEIN IPC. However, because the complex morphology of the emission caused its significance to be underestimated, the corresponding source was not included in the EMSS cluster sample and hence not previously identified. Simulations of the EMSS source detection and selection procedure suggest a general bias of the EMSS against X-ray luminous clusters with pronounced substructure. If highly unrelaxed, merging clusters are common at high redshift, they could create a bias in some samples as the morphological complexity of mergers may cause them to fall below the flux limit of surveys that assume a unimodal spatial source geometry. Conversely, the enhanced X-ray luminosity of mergers might cause them to, temporarily, rise above the flux limit. Either effect could lead to erroneous conclusions about the evolution of the comoving cluster space density. A high fraction of morphologically complex clusters at high redshift would also call into question the validity of cosmological studies that assume that the systems under investigation are virialized.Comment: 17 pages, 7 figures; revised to focus on possible detection biases caused by substructure in clusters; accepted for publication in ApJ; uses emulateapj.sty; eps files of figures 1 and 2 can be obtained from ftp://hubble.ifa.hawaii.edu/pub/ebeling/warp

    Time scale separation and heterogeneous off-equilibrium dynamics in spin models over random graphs

    Full text link
    We study analytically and numerically the statics and the off-equilibrium dynamics of spin models over finitely connected random graphs. We identify a threshold value for the connectivity beyond which the loop structure of the graph becomes thermodynamically relevant. Glauber dynamics simulations show that this loop structure is responsible for the onset of dynamical features of a local character (dynamical heterogeneities and spontaneous time scale separation), consistently with previous (experimental and numerical) studies of glasses and spin glasses in their approach to the low temperature phase.Comment: 5 pages, latex, 2 postscript figure

    Observational Constraints on Open Inflation Models

    Full text link
    We discuss observational constraints on models of open inflation. Current data from large-scale structure and the cosmic microwave background prefer models with blue spectra and/or Omega_0 >= 0.3--0.5. Models with minimal anisotropy at large angles are strongly preferred.Comment: 4 pages, RevTeX, with 2 postscript figures included. Second Figure correcte
    corecore