638 research outputs found

    Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime silicate glass

    Full text link
    High-resolution Brillouin scattering is used to achieve 3-dimensional maps of the longitudinal acoustic mode frequency shift in soda-lime silicate glasses subject to Vickers indentations. Assuming that residual stress-induced effects are simply proportional to density changes, residual densification fields are obtained. The density gradient is nearly isotropic, confirming earlier optical observations made on a similar glass. The results show that Brillouin micro-spectroscopy opens the way to a fully quantitative comparison of experimental data with predictions of mechanical models for the identification of a constitutive law.Comment: 4 pages, 3 figures, revised version, to appear in Appl. Phys. Let

    A comprehensive model of the optical spectra of carbon nanotubes on substrate by polarized microscopy

    Full text link
    Polarized optical microscopy and spectroscopy are progressively becoming key methods for the high-throughput characterization of individual carbon nanotubes (CNTs) and other one-dimensional nanostructures, on substrate and in devices. The optical response of CNTs on substrate in cross polarization experiments is usually limited by the polarization conservation of the optical elements in the experimental setup. We developed a theoretical model taking into account the depolarization by the setup and the optical response of the substrate. We show that proper modelization of the experimental data requires to take into account both non-coherent and coherent light depolarization by the optical elements. We also show how the nanotube signal can be decoupled from the complex reflection factor of the anti-reflection substrate which is commonly used to enhance the optical contrast. Finally, we describe an experimental protocol to extract the depolarization parameters and the complex nanotube susceptibility, and how it can improve the chirality assignment of individual carbon nanotubes in complex cases.Comment: 10 pages, 7 Figures, submitted to PRB. A supplementary information completes this pape

    Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement

    Get PDF
    At low temperature the photoluminescence of single-wall carbon nanotubes show a large variety of spectral profiles ranging from ultra narrow lines in suspended nanotubes to broad and asymmetrical line-shapes that puzzle the current interpretation in terms of exciton-phonon coupling. Here, we present a complete set of photoluminescence profiles in matrix embedded nanotubes including unprecedented narrow emission lines. We demonstrate that the diversity of the low-temperature luminescence profiles in nanotubes originates in tiny modifications of their low-energy acoustic phonon modes. When low energy modes are locally suppressed, a sharp photoluminescence line as narrow as 0.7 meV is restored. Furthermore, multi-peak luminescence profiles with specific temperature dependence show the presence of confined phonon modes

    Eliminating the broadening by finite aperture in Brillouin spectroscopy

    Full text link
    We present a new optical arrangement which allows to avoid the broadening by finite aperture in Brillouin spectroscopy. In this system, all the rays scattered at the same angle by the whole scattering volume are collected on a single pixel of the area detector. This allows to use large collection angles, increasing the luminosity without lowering the accuracy of the frequency-shift and linewidth measurements. Several results of experimental checks are provided, showing the efficiency of the device.Comment: 14 pages, 8 figure

    Confidence in College Athletics

    Get PDF
    I researched the processes used by intercollegiate athletes to maintain confidence throughout their sports career, including how they prepared for games/competitions, how they dealt with pressures, and how other factors affected their performance and thought process during games. For this research, I created and administered an online survey to 70 college athletes across four sports. I found that many things gave the athletes confidence in themselves to play their sport such as family and preparation. However, some things also lowered the respondents’ confidence levels such as failing and negativity. Results imply that athletes, for the most part, seem confident and optimistic. The majority of participants had past struggles with confidence, but were able to overcome them with the support of teammates, coaches, family, and friends

    Chirality dependence of the absorption cross-section of carbon nanotubes

    Get PDF
    The variation of the optical absorption of carbon nanotubes with their geometry has been a long standing question at the heart of both metrological and applicative issues, in particular because optical spectroscopy is one of the primary tools for the assessment of the chiral species abundance of samples. Here, we tackle the chirality dependence of the optical absorption with an original method involving ultra-efficient energy transfer in porphyrin/nanotube compounds that allows uniform photo-excitation of all chiral species. We measure the absolute absorption cross-section of a wide range of semiconducting nanotubes at their S22 transition and show that it varies by up to a factor of 2.2 with the chiral angle, with type I nanotubes showing a larger absorption. In contrast, the luminescence quantum yield remains almost constant

    Hot electron cooling by acoustic phonons in graphene

    Full text link
    We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T / V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T∝VT\propto\sqrt{V} behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ\Sigma in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ\Sigma, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.Comment: 5 figure

    Light control of charge transfer and excitonic transitions in a carbon nanotube/porphyrin hybrid

    Get PDF
    Carbon nanotube–chromophore hybrids are promising building blocks in order to obtain a controlled electro-optical transduction effect at the single nano-object level. In this work, a strong spectral selectivity of the electronic and the phononic response of a chromophore-coated single nanotube transistor is observed for which standard photogating cannot account. This paper investigates how light irradiation strongly modifies the coupling between molecules and nanotube within the hybrid by means of combined Raman diffusion and electron transport measurements. Moreover, a nonconventional Raman enhancement effect is observed when light irradiation is on the absorption range of the grafted molecule. Finally, this paper shows how the dynamics of single electron tunneling in the device at low temperature is strongly modified by molecular photoexcitation. Both effects will be discussed in terms of photoinduced excitons coupled to electronic levels
    • 

    corecore