9 research outputs found

    Suppression of impurity ions optical transitions dephasing in nanocrystals

    Get PDF
    Abnormally narrow spectral lines have been observed in the luminescence spectra of Y₂SiO₅Pr³⁺ and YVO₄:Eu³⁺ nanocrystals at the room temperature. This fact was interpreted as the result of optical transitions dephasing processes suppression in the nanocrystals. The general cause of the observed effect is the weakening of phonon scattering on the impurity centre as a result of the quantum size effect in nanocrystal phonon subsystem. At first the dependence of spectral line width on the nanocrystal size has been shown. Unnecessary of the deep cooling for narrow optical resonances obtaining makes these nanocrystals a potential candidate for the wide set of applications in the optical memory and quantum computing devices.На спектрах люмінесценції нанокристалів Y₂SiO₅Pr³⁺ та YVO₄:Eu³⁺ за кімнатної температури спостерігалася наявність аномально вузьких спектральних ліній. Це було інтерпретовано як результат заглушення процесів дефазування оптичних переходів у нанокристалах. Причиною зазначеного ефекту є ослаблення розсіювання фононів на домішковому центрі внаслідок впливу квантово-розмірного ефекту на підсистему фононів у нанокристалі. Уперше отримано залежність ширини спектральних ліній від розміру нанокристала. Відсутність потреби глибокого заморожування для отримання вузьких оптичних резонансів відкриває можливості використання таких нанокристалів для створення пристроїв оптичної памяті та квантових компютерів.На спектрах люминесценции нанокристаллов Y₂SiO₅Pr³⁺ и YVO₄:Eu³⁺ при комнатной температуре наблюдалось наличие аномально узких спектральных линий. Это было интерпретировано как результат подавления процессов дефазировки оптических переходов в нанокристаллах. Причиной наблюдаемого эффекта является ослабление рассеяния фононов на примесном центре в результате влияния квантово-размерного эффекта на подсистему фононов в нанокристалле. Впервые получена зависимость ширины спектральных линий от размера нанокристалла. Отсутствие необходимости глубокого замораживания для получения узких оптических резонансов открывает широкие возможности применения данных нанокристаллов для создания устройств оптической памяти и квантовых компьютеров

    Spectroscopic Properties of Nanoceria Allowing Visualization of Its Antioxidant Action

    No full text
    Two distinct luminescence centers were revealed in ceria nanocrystals: first one – Ce3+ ions with 5d-4f luminescence at 390 nm, and second one – Ce4+–O2− complexes showing charge transfer (CT) luminescence at 630 nm. Intensity of Ce3+ luminescence depends directly on the concentration of oxygen vacancies in nanoceria and can be varied by means of change of both heat treatment atmosphere from oxidizing to reducing and the size of nanocrystal. Ce3+ luminescence can be used for visualization of the processes of interaction between ceria nanoparticles and reactive oxygen species using relative intensity of Ce3+ band as a measure of Ce4+/Ce3+ ratio during oxidation reaction.

    Luminescent properties of composite scintillators based on PPO and o-POPOP doped SiO2\mathrm{SiO_2} xerogel matrices

    No full text
    New composite scintillation detectors were obtained by incorporation of PPO and o-POPOP organicscintillators into porous sol–gel silica matrices. Composites possess high photoluminescence intensityand decay time in nanosecond range. The absolute light yield of composite scintillators at excitation byalpha-radiation is about 4000–5000 photons/MeV and the pulse–height resolution is about 30%. The investigations of time-resolved luminescence of composites performed under excitation by synchrotron radiation in the 3.7–25 eV range have shown that the non-radiative energy transfer between host matrix and dopant molecules occurs via singlet states of SiO2_2 oxygen-deficient centers

    Formation of luminescent centers in CeO2CeO{_2} nanocrystals

    No full text
    The nature of luminescence centers in CeO2 nanocrystals with varied oxygen stoichiometry has been investigated. It was shown that the luminescence of CeO2 is caused by the radiative relaxation in two different optical centers: the first one is Ce4+–O2− charge transfer state and the second one is Ce3+ ions. The ratio of Ce4+/Ce3+ centers depends on the amount of oxygen vacancies, therefore the variation of ceria stoichiometry allows changing the concentration of Ce4+–O2− and Ce3+ luminescence centers. Analysis of splitting of the excitation bands of Ce3+ luminescence has shown that oxygen vacancies in CeO2 nanocrystals are formed at the nearest-neighbor position to the cerium ion

    Transient Phenomena in Scintillation Materials

    No full text
    Time resolution becomes an increasingly important property of the scintillators to be exploited in radiation detectors for coming high-luminosity high-energy physics experiments and medical imaging applications. Multicomponent scintillators enable purposeful design of scintillation properties and, consequently, are attractive for fast radiation detection but suffer for the emission delay due to trapping of nonequilibrium carriers. Therefore, novel measurement techniques are required to characterize the timing properties for purposeful improvement of the scintillators. Here, the capabilities of the differential optical absorption technique, exploited in subpicosecond domain in pump and probe configuration, are introduced and the results obtained by application of this technique for studying the carrier dynamics in two prospective scintillators, garnet-type Gd3_{3}Al2_{2}Ga3_{3}O12_{12} (GAGG) doped by cerium and codoped by magnesium and Ce-doped oxyorthosilicates LSO and LYSO, are presented. The importance of electron trapping for the timing properties of these scintillators is revealed
    corecore