256 research outputs found

    Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold

    Full text link
    The excitation spectrum around the pump-only stationary state of a polariton optical parametric oscillator (OPO) in semiconductor microcavities is investigated by time-resolved photoluminescence. The response to a weak pulsed perturbation in the vicinity of the idler mode is directly related to the lifetime of the elementary excitations. A dramatic increase of the lifetime is observed for a pump intensity approaching and exceeding the OPO threshold. The observations can be explained in terms of a critical slowing down of the dynamics upon approaching the threshold and the following onset of the soft Goldstone mode

    Dynamics of formation and decay of coherence in a polariton condensate

    Full text link
    We study the dynamics of formation and decay of a condensate of microcavity polaritons. We investigate the relationship between the number of particles, the emission's linewidth and its degree of linear polarization which serves as the order parameter. Tracking the condensate's formation, we show that, even when interactions are negligible, coherence is not determined only by occupation of the ground state. As a result of the competition between the coherent and thermal fractions of the condensate, the highest coherence is obtained some time after the particle number has reached its maximum

    Dynamics of a polariton condensate transistor switch

    Full text link
    We present a time-resolved study of the logical operation of a polariton condensate transistor switch. Creating a polariton condensate (source) in a GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the polariton propagation towards a collector, at the ridge edge, is controlled by a second weak pulse (gate), located between the source and the collector. The experimental results are interpreted in the light of simulations based on the generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.Comment: 4 pages, 2 figure

    Energy relaxation of exciton-polariton condensates in quasi-1D microcavities

    Full text link
    We present a time-resolved study of energy relaxation and trapping dynamics of polariton condensates in a semiconductor microcavity ridge. The combination of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity gives rise to profuse quantum phenomena where the repulsive potentials created by the lasers allow the modulation and control of the polariton flow. We analyze in detail the dependence of the dynamics on the power of both lasers and determine the optimum conditions for realizing an all-optical polariton condensate transistor switch. The experimental results are interpreted in the light of simulations based on a generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.Comment: 15 pages, 20 figure

    Self-consistent model for ambipolar tunneling in quantum-well systems

    Full text link
    We present a self-consistent approach to describe ambipolar tunneling in asymmetrical double quantum wells under steady-state excitation and extend the results to the case of tunneling from a near-surface quantum well to surface states. The results of the model compare very well with the behavior observed in photoluminescence experiments in InGaAs/InPInGaAs/InP asymmetric double quantum wells and in near-surface AlGaAs/GaAsAlGaAs/GaAs single quantum wells.Comment: 10 pages, REVTeX 3.

    Spin Selective Filtering of Polariton Condensate Flow

    Full text link
    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.Comment: 5 pages, 4 figure

    Optical control of spin textures in quasi-one-dimensional polariton condensates

    Full text link
    We investigate, through polarization-resolved spectroscopy, the spin transport by propagating polariton condensates in a quasi one-dimensional microcavity ridge along macroscopic distances. Under circularly polarized, continuous-wave, non-resonant excitation, a sinusoidal precession of the spin in real space is observed, whose phase depends on the emission energy. The experiments are compared with simulations of the spinor-polariton condensate dynamics based on a generalized Gross-Pitaevskii equation, modified to account for incoherent pumping, decay and energy relaxation within the condensate.Comment: 10 pages, 9 figure
    corecore