4 research outputs found

    Selection for intrabody solubility in mammalian cells using GFP fusions.: Soluble intrabody selection in mammalian cells

    No full text
    International audienceSingle-chain antibody fragments (scFv) expressed in the cytoplasm of mammalian cells, also called intrabodies, have many applications in functional proteomics. These applications are, however, limited by the aggregation-prone behaviour of many intrabodies. We show here that two scFv with highly homologous sequences and comparable soluble expression levels in Escherichia coli cytoplasm have different behaviours in mammalian cells. When over-expressed, one of the scFv aggregates in the cytoplasm whereas the second one is soluble and active. When expressed at low levels, using a retroviral vector, as a fusion with the green fluorescent protein (GFP) the former does not form aggregates and is degraded, resulting in weakly fluorescent cells, whereas the latter is expressed as a soluble protein, resulting in strongly fluorescent cells. These data suggest that the GFP signal can be used to evaluate the soluble expression of intrabodies in mammalian cells. When applied to a subset of an E.coli-optimised intrabody library, we showed that the population of GFP+ cells contains indeed soluble mammalian intrabodies. Altogether, our data demonstrate that the requirements for soluble intrabody expression are different in E.coli and mammalian cells, and that intrabody libraries can be directly optimised in human cells using a simple GFP-based assay

    Multiplexed-Based Assessment of DNA Damage Response to Chemotherapies Using Cell Imaging Cytometry

    No full text
    International audienceThe current methods for measuring the DNA damage response (DDR) are relatively labor-intensive and usually based on Western blotting, flow cytometry, and/or confocal immunofluorescence analyses. They require many cells and are often limited to the assessment of a single or few proteins. Here, we used the Celigo® image cytometer to evaluate the cell response to DNA-damaging agents based on a panel of biomarkers associated with the main DDR signaling pathways. We investigated the cytostatic or/and the cytotoxic effects of these drugs using simultaneous propidium iodide and calcein-AM staining. We also describe new dedicated multiplexed protocols to investigate the qualitative (phosphorylation) or the quantitative changes of eleven DDR markers (H2AX, DNA-PKcs, ATR, ATM, CHK1, CHK2, 53BP1, NBS1, RAD51, P53, P21). The results of our study clearly show the advantage of using this methodology because the multiplexed-based evaluation of these markers can be performed in a single experiment using the standard 384-well plate format. The analyses of multiple DDR markers together with the cell cycle status provide valuable insights into the mechanism of action of investigational drugs that induce DNA damage in a time- and cost-effective manner due to the low amounts of antibodies and reagents required

    Targeting the p38 MAPK pathway inhibits irinotecan resistance in colon adenocarcinoma.: Activated p38 and chemoresistance

    No full text
    International audienceDespite recent advances in the treatment of colon cancer, tumor resistance is a frequent cause of chemotherapy failure. To better elucidate the molecular mechanisms involved in resistance to irinotecan (and its active metabolite SN38), we established SN38-resistant clones derived from HCT-116 and SW48 cell lines. These clones show various levels (6- to 60-fold) of resistance to SN-38 and display enhanced levels of activated MAPK p38 as compared with the corresponding parental cells. Because four different isoforms of p38 have been described, we then studied the effect of p38 overexpression or downregulation of each isoform on cell sensivity to SN38 and found that both α and β isoforms are involved in the development of resistance to SN38. In this line, we show that cell treatment with SB202190, which inhibits p38α and p38β, enhanced the cytotoxic activity of SN38. Moreover, p38 inhibition sensitized tumor cells derived from both SN38-sensitive and -resistant HCT116 cells to irinotecan treatment in xenograft models. Finally, we detected less phosphorylated p38 in primary colon cancer of patients sensitive to irinotecan-based treatment, compared with nonresponder patients. This indicates that enhanced level of phosphorylated p38 could predict the absence of clinical response to irinotecan. Altogether, our results show that the p38 MAPK pathway is involved in irinotecan sensitivity and suggest that phosphorylated p38 expression level could be used as a marker of clinical resistance to irinotecan. They further suggest that targeting the p38 pathway may be a potential strategy to overcome resistance to irinotecan-based chemotherapies in colorectal cancer
    corecore