9 research outputs found
Ocean-related options for climate change mitigation and adaptation: A machine learning-based evidence map protocol
BackgroundOcean-related options (OROs) to mitigate and adapt to climate change are receiving increasing attention from practitioners, decision-makers, and researchers. In order to guide future ORO development and implementation, a catalogue of scientific evidence addressing outcomes related to different ORO types is critical. However, until now, such a synthesis has been hindered by the large size of the evidence base. Here, we detail a protocol using a machine learning-based approach to systematically map the extent and distribution of academic evidence relevant to the development, implementation, and outcomes of OROs.MethodTo produce this systematic map, literature searches will be conducted in English across two bibliographic databases using a string of search terms relating to the ocean, climate change, and OROs. A sample of articles from the resulting de-duplicated corpus will be manually screened at the title and abstract level for inclusion or exclusion against a set of predefined eligibility criteria in order to select all relevant literature on marine and coastal socio-ecological systems, the type of ORO and its outcomes. Descriptive metadata on the type and location of intervention, study methodology, and outcomes will be coded from the included articles in the sample. This sample of screening and coding decisions will be used to train a machine learning model that will be used to estimate these labels for all the remaining unseen publications. The results will be reported in a narrative synthesis summarising key trends, knowledge gaps, and knowledge clusters
Observing change in pelagic animals as sampling methods shift: the case of Antarctic krill
Understanding and managing the response of marine ecosystems to human pressures including climate change requires reliable large-scale and multi-decadal information on the state of key populations. These populations include the pelagic animals that support ecosystem services including carbon export and fisheries. The use of research vessels to collect information using scientific nets and acoustics is being replaced with technologies such as autonomous moorings, gliders, and meta-genetics. Paradoxically, these newer methods sample pelagic populations at ever-smaller spatial scales, and ecological change might go undetected in the time needed to build up large-scale, long time series. These global-scale issues are epitomised by Antarctic krill (Euphausia superba), which is concentrated in rapidly warming areas, exports substantial quantities of carbon and supports an expanding fishery, but opinion is divided on how resilient their stocks are to climatic change. Based on a workshop of 137 krill experts we identify the challenges of observing climate change impacts with shifting sampling methods and suggest three tractable solutions. These are to: improve overlap and calibration of new with traditional methods; improve communication to harmonise, link and scale up the capacity of new but localised sampling programs; and expand opportunities from other research platforms and data sources, including the fishing industry. Contrasting evidence for both change and stability in krill stocks illustrates how the risks of false negative and false positive diagnoses of change are related to the temporal and spatial scale of sampling. Given the uncertainty about how krill are responding to rapid warming we recommend a shift towards a fishery management approach that prioritises monitoring of stock status and can adapt to variability and change
Observing change in pelagic animals as sampling methods shift: the case of Antarctic krill
Understanding and managing the response of marine ecosystems to human pressures including climate change requires reliable large-scale and multi-decadal information on the state of key populations. These populations include the pelagic animals that support ecosystem services including carbon export and fisheries. The use of research vessels to collect information using scientific nets and acoustics is being replaced with technologies such as autonomous moorings, gliders, and meta-genetics. Paradoxically, these newer methods sample pelagic populations at ever-smaller spatial scales, and ecological change might go undetected in the time needed to build up large-scale, long time series. These global-scale issues are epitomised by Antarctic krill (Euphausia superba), which is concentrated in rapidly warming areas, exports substantial quantities of carbon and supports an expanding fishery, but opinion is divided on how resilient their stocks are to climatic change. Based on a workshop of 137 krill experts we identify the challenges of observing climate change impacts with shifting sampling methods and suggest three tractable solutions. These are to: improve overlap and calibration of new with traditional methods; improve communication to harmonise, link and scale up the capacity of new but localised sampling programs; and expand opportunities from other research platforms and data sources, including the fishing industry. Contrasting evidence for both change and stability in krill stocks illustrates how the risks of false negative and false positive diagnoses of change are related to the temporal and spatial scale of sampling. Given the uncertainty about how krill are responding to rapid warming we recommend a shift towards a fishery management approach that prioritises monitoring of stock status and can adapt to variability and change
Climate change impacts on Antarctic krill behaviour and population dynamics
Krill habitats in the Southern Ocean are impacted by changing climate conditions, reduced sea ice and rising temperatures. These changes, in turn, affect krill occurrence, physiology and behaviour, which could have ecosystem impacts. In this Review, we examine climate change impacts on Antarctic krill and the potential implications for the Southern Ocean ecosystem. Since the 1970s, there have been apparent reductions in adult population density and the occurrence of very dense swarms in the northern Southwest Atlantic. These changes were associated with latitudinal and longitudinal rearrangement of population distribution — including a poleward contraction in the Southwest Atlantic — and were likely driven by ocean warming, sea-ice reductions and changes in the quality of larval habitats. As swarms are targeted by fishers and predators, this contraction could increase fishery–predator interactions, potentially exacerbating risk to already declining penguin populations and recovering whale populations. These risks require urgent mitigation measures to be developed. A circumpolar monitoring network using emerging technologies is needed to augment existing surveys and better record the shifts in krill distribution
Status, Change, and Futures of Zooplankton in the Southern Ocean
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research
Status, Change, and Futures of Zooplankton in the Southern Ocean
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research
Status, Change, and Futures of Zooplankton in the Southern Ocean
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods,
salps and pteropods, are notable because of their biomass and abundance and their
roles in maintaining food webs and ecosystem structure and function, including the
provision of globally important ecosystem services. These groups are consumers of
microbes, primary and secondary producers, and are prey for fishes, cephalopods,
seabirds, and marine mammals. In providing the link between microbes, primary
production, and higher trophic levels these taxa influence energy flows, biological
production and biomass, biogeochemical cycles, carbon flux and food web interactions
thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic
krill (Euphausia superba) and various fish species are harvested by international
fisheries. Global and local drivers of change are expected to affect the dynamics
of key zooplankton species, which may have potentially profound and wide-ranging
implications for Southern Ocean ecosystems and the services they provide. Here we
assess the current understanding of the dominant metazoan zooplankton within the
Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and
pteropod species. We provide an overview of observed and potential future responses
of these taxa to a changing Southern Ocean and the functional relationships by
which drivers may impact them. To support future ecosystem assessments and
conservation and management strategies, we also identify priorities for Southern Ocean
zooplankton research
Developing a Southern Ocean Marine Ecosystem Model Ensemble To Assess Climate Risks and Uncertainties
Climate change could irreversibly modify Southern Ocean ecosystems. Marine ecosystem model (MEM) ensembles can assist policy making by projecting future changes and allowing the evaluation and assessment of alternative management approaches. However, projected future changes in total consumer biomass from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) global MEM ensemble highlight an uncertain future for the Southern Ocean, indicating the need for a region-specific ensemble. A large source of model uncertainty originates from the Earth system models (ESMs) used to force FishMIP models, particularly future changes to lower trophic level biomass and sea ice coverage. To build confidence in regional MEMs as ecosystem-based management tools in a changing climate that can better account for uncertainty, we propose the development of a Southern Ocean Marine Ecosystem Model Ensemble (SOMEME) contributing to the FishMIP 2.0 regional model intercomparison initiative. One of the challenges hampering progress of regional MEM ensembles is achieving the balance of global standardised inputs with regional relevance. As a first step, we design a SOMEME simulation protocol, that builds on and extends the existing FishMIP framework, in stages that include: detailed skill assessment of climate forcing variables for Southern Ocean regions, extension of fishing forcing data to include whaling, and new simulations that assess ecological links to sea-ice processes in an ensemble of candidate regional MEMs. These extensions will help advance assessments of urgently needed climate change impacts on Southern Ocean ecosystems