23 research outputs found

    A novel method to visualise and quantify circadian misalignment

    Get PDF
    The circadian clock governs virtually all processes in the human body, including sleep-wake behaviour. Circadian misalignment describes the off-set between sleep-wake cycles and clock-regulated physiology. This strain is predominantly caused by external (societal) demands including shift work, early school start times and fast travels across time zones. Sleeping at the 'wrong' internal time can jeopardise health and safety, and we therefore need a good quantification of this phenomenon. Here, we propose a novel method to quantify the mistiming of sleep-wake rhythms and demonstrate its versatility in day workers and shift workers. Based on a single time series, our Composite Phase Deviation method unveils distinct, subject-and schedule-specific geometries ('islands and pancakes') that illustrate how modern work times interfere with sleep. With increasing levels of circadian strain, the resulting shapes change systematically from small, connected forms to large and fragmented patterns. Our method shows good congruence with published measures of circadian misalignment (i.e., Inter-daily Stability and 'Behavioural Entrainment'), but offers added value as to its requirements, e.g., being computable for sleep logs and questionnaires. Composite Phase Deviations will help to understand the mechanisms that link 'living against the clock' with health and disease on an individual basis

    Chronotype Modulates Sleep Duration, Sleep Quality, and Social Jet Lag in Shift-Workers

    Get PDF
    This study explores chronotype-dependent tolerance to the demands of working morning, evening, and night shifts in terms of social jet lag, sleep duration, and sleep disturbance. A total of 238 shift-workers were chronotyped with the Munich ChronoType Questionnaire for shift-workers (MCTQ(Shift)), which collects information about shift-dependent sleep duration and sleep timing. Additionally, 94 shift-workers also completed those items of the Sleep Questionnaire from the Standard Shift-Work Index (SSI) that assess sleep disturbances. Although all participants worked morning, evening, and night shifts, subsamples differed in rotation direction and speed. Sleep duration, social jet lag, and sleep disturbance were all significantly modulated by the interaction of chronotype and shift (mixed-model ANOVAs). Earlier chronotypes showed shortened sleep duration during night shifts, high social jet lag, as well as higher levels of sleep disturbance. A similar pattern was observed for later chronotypes during early shifts. Age itself only influenced sleep duration and quality per se, without showing interactions with shifts. We found that workers slept longer in fast, rotating shift schedules. Since chronotype changes with age, investigations on sleep behavior and circadian misalignment in shift-workers have to consider chronotype to fully understand interindividual and intraindividual variability, especially in view of the current demographic changes. Given the impact of sleep on health, our results stress the importance of chronotype both in understanding the effects of shift-work on sleep and in devising solutions to reduce shift-work-related health problems

    The Munich ChronoType Questionnaire for Shift-Workers (MCTQ(Shift))

    Get PDF
    Sleep is systematically modulated by chronotype in day-workers. Therefore, investigations into how shift-work affects sleep, health, and cognition may provide more reliable insights if they consider individual circadian time (chronotype). The Munich ChronoType Questionnaire (MCTQ) is a useful tool for determining chronotype. It assesses chronotype based on sleep behavior, specifically on the local time of mid-sleep on free days corrected for sleep debt accumulated over the workweek (MSFsc). Because the original MCTQ addresses people working standard hours, we developed an extended version that accommodates shift-work (MCTQ(Shift)). We first present the validation of this new version with daily sleep logs (n = 52) and actimetry (n = 27). Next, we evaluated 371 MCTQ(Shift) entries of shift-workers (rotating through 8-h shifts starting at 0600 h, 1400 h, and 2200 h). Our results support experimental findings showing that sleep is difficult to initiate and to maintain under the constraints of shift-work. Sleep times are remarkably stable on free days (on average between midnight and 0900 h), so that chronotype of shift-workers can be assessed by means of MSF-similar to that of day-workers. Sleep times on free-days are, however, slightly influenced by the preceding shift (displacements < 1 h), which are smallest after evening shifts. We therefore chose this shift-specific mid-sleep time (MSFE) to assess chronotype in shift-workers. The distribution of MSFE in our sample is identical to that of MSF in day-workers. We propose conversion algorithms for chronotyping shift-workers whose schedules do not include free days after evening shifts

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Chronotype Modulates Sleep Duration, Sleep Quality, and Social Jet Lag in Shift-Workers

    Get PDF
    This study explores chronotype-dependent tolerance to the demands of working morning, evening, and night shifts in terms of social jet lag, sleep duration, and sleep disturbance. A total of 238 shift-workers were chronotyped with the Munich ChronoType Questionnaire for shift-workers (MCTQ(Shift)), which collects information about shift-dependent sleep duration and sleep timing. Additionally, 94 shift-workers also completed those items of the Sleep Questionnaire from the Standard Shift-Work Index (SSI) that assess sleep disturbances. Although all participants worked morning, evening, and night shifts, subsamples differed in rotation direction and speed. Sleep duration, social jet lag, and sleep disturbance were all significantly modulated by the interaction of chronotype and shift (mixed-model ANOVAs). Earlier chronotypes showed shortened sleep duration during night shifts, high social jet lag, as well as higher levels of sleep disturbance. A similar pattern was observed for later chronotypes during early shifts. Age itself only influenced sleep duration and quality per se, without showing interactions with shifts. We found that workers slept longer in fast, rotating shift schedules. Since chronotype changes with age, investigations on sleep behavior and circadian misalignment in shift-workers have to consider chronotype to fully understand interindividual and intraindividual variability, especially in view of the current demographic changes. Given the impact of sleep on health, our results stress the importance of chronotype both in understanding the effects of shift-work on sleep and in devising solutions to reduce shift-work-related health problems

    Exogenous melatonin decreases circadian misalignment and body weight among early types

    No full text
    Shift workers experience chronic circadian misalignment, which can manifest itself in reduced melatonin production, and has been associated with metabolic disorders. In addition, chronotype modulates the effect of night shift work, with early types presenting greater circadian misalignment when working night shift as compared to late types. Melatonin supplementation has shown positive results reducing weight gain in animal models, but the effect of exogenous melatonin in humans on body weight in the context of shift work remains inconsistent. The aim of this study was thus to evaluate the effects of exogenous melatonin on circadian misalignment and body weight among overweight night shift workers, according to chronotype, under real life conditions. We conducted a double-blind, randomized, placebo-controlled, crossover trial where melatonin (3 mg) or placebo was administered on non-night shift nights for 12 weeks in 27 female nurses (37.1 yo, ±5.9 yo; BMI 29.9 kg/m2, ±3.3 kg/m2). Melatonin (or placebo) was only taken on nights when the participants did not work night shifts, that is, on nights when they slept (between night shifts and on days-off). Composite Phase Deviations (CPD) of actigraphy-based midsleep timing were calculated to measure circadian misalignment. The analyses were performed for the whole group and by chronotype. We found approximately 20% reduction of circadian misalignment after exogenous melatonin administration considering all chronotypes. Moreover, melatonin supplementation in those who presented high circadian misalignment, as observed in early chronotypes, reduced body weight, BMI, waist circumference, and hip circumference, without any change in the participants’ calorie intake or physical activity levels

    Sleep Timing in Patients with Precocious and Delayed Pubertal Development

    Get PDF
    Previous studies have reported a shift in the timing of sleep during adolescence toward a later time. To date, it is unclear whether hormonal changes during puberty might contribute to this change in sleeping behavior. We systematically assessed pubertal development and sleep timing in a cross-sectional case-control study in girls with precocious (n = 42) and boys with delayed pubertal development (n = 19). We used the Munich ChronoType Questionnaire and the Children’s ChronoType Questionnaire to assess sleep timing in patients and age- and sex-matched controls (n = 309) and used the midpoint of sleep on free days, corrected for potential sleep debt accumulated during the school week, as a marker for sleep timing. Compared to the controls, girls with central precocious puberty showed a delay in sleep timing of 54 min, and girls with premature pubarche slept on average 30 min later. Male adolescents with delayed pubertal development showed an average sleep midpoint that was 40 min earlier compared to the control group. The results of this pilot study suggest an association between pubertal onset and shifts in sleep timing, which is a novel finding in human sleep behavior. Prospective studies in larger cohorts will be needed to examine the robustness and generalizability of the findings
    corecore