13 research outputs found

    Micro and nanoplastics in the aquatic environment with special reference to synthetic fibers

    Get PDF
    Currently, there is great concern for the release of plastic nano- and micro fibers and microparticles (microplastics) to the natural environment for which nobody knows, so far, the ultimate consequences for health and ecological homeostasis. In this chapter book we discuss all known aspects of synthetic nano- and microfibers. This included morphology, physicochemical properties, production and origin of nano/micro fibers entering the atmosphere, water and food chain; exposure and ingress via life cycle for aquatic biota; analytical and measurement methods;Postprin

    Report of the Working Group of Biological Effects

    Get PDF
    The Working Group on Biological Effects of Contaminants (WGBEC) investigates the biological effects of contaminants in the marine environment. The group provides research and increases the understanding of contaminant interactions and effects, including the development of inte-grated biological effects monitoring strategies, which are used to support international research and monitoring. The WGBEC has contributed significantly to the implementation and harmonization of tech-niques that can be used to evaluate the biological effects of pollutants in national monitoring programmes. An overview of national effect-based monitoring programmes of Member States is provided with the aim to support European countries and Regional Seas Conventions on their implementation. A summary of the national effects-based monitoring programmes has been pro-vided by twelve European countries represented at the WGBEC meetings. The adoption of bio-logical effects monitoring can differ widely and comparisons between approaches and the choice of biological effects methods used acts as an important tool. A summary of the main findings is presented. Furthermore, OSPAR's Hazardous Substances and Eutrophication Committee (HASEC) has en-couraged contracting parties to perform targeted biological effects monitoring to enhance the assessment of contaminants in sediment and biota towards the OSPAR QSR2023. WGBEC mem-bers contributed to the integrated biological effects approach assessment by providing data from their national monitoring activities to produce maps and figures to enable interpretations. Revision of the biological effects methods, including new techniques and developments, and the quality assurance of existing methods are core activities for the WGBEC, which require continu-ous discussion and evaluation by the group. Activities include the production of new ICES TIMES documents as well as intercalibration exercises to ensure Member States are providing comparable data for national monitoring. To this end, intercalibration exercises were performed under the BEQUALM programme for two of the more commonly used biological effects meth-ods, including micronucleus formation in mussel haemocytes and PAH metabolites in fish bile. These intercalibrations were successful despite identifying some variation in reported values be-tween laboratories. Further intercalibration exercises are planned and the WGBEC strongly sup-port the need for such quality assurance. In addition to the national monitoring activities and the different methods and approaches for determining the effects of contaminants on biological systems, the WGBEC was interested in discussing some key questions related to the potential impacts of contaminants to marine life. These questions included: the direct and indirect effects of natural and synthetic particles; how climate change and acidification parameters can interact with contaminants and influence bioa-vailability and effect; whether the structure of marine communities can be used to indicate con-taminant exposure; to provide guidance on performing risk assessments for contaminants of emerging concern; and to evaluate the effects of contaminants in marine sediments and whether current sediment toxicity tests are adequate. In addition, and as a wider concept, the linkages between contaminants in the marine environment and human health were also described.S

    Understanding the impact of chemicals on marine fish populations: the need for an integrative approach involving population and disease ecology

    No full text
    The impact of acute and chronic marine pollution on the population changes of individual fish remains mostly unknown. In this paper, we share our study and review similar published work, emphasising fish health monitoring in European Seas and illustrating it using case studies. Arguably, an integrative approach is needed to assess the impact on population of chemical contaminants, beginning with field observations and complemented with experimental (laboratory and mesocosm) studies and modelling. Field surveys and monitoring using fish biomarkers should be intensified and ideally integrated with population statistics and fish ecology knowledge. Moreover, the indirect effects of chemicals – altering ecosystem functions – and the monitoring of immunological biomarkers and fatal diseases in wild fish populations should receive more attention

    Understanding the impact of chemicals on marine fish populations: the need for an integrative approach involving population and disease ecology

    No full text
    The impact of acute and chronic marine pollution on the population changes of individual fish remains mostly unknown. In this paper, we share our study and review similar published work, emphasising fish health monitoring in European Seas and illustrating it using case studies. Arguably, an integrative approach is needed to assess the impact on population of chemical contaminants, beginning with field observations and complemented with experimental (laboratory and mesocosm) studies and modelling. Field surveys and monitoring using fish biomarkers should be intensified and ideally integrated with population statistics and fish ecology knowledge. Moreover, the indirect effects of chemicals – altering ecosystem functions – and the monitoring of immunological biomarkers and fatal diseases in wild fish populations should receive more attention.Postprin

    Toxicity characterization of surface sediments from a Mediterranean coastal lagoon.

    No full text
    The occurrence of bioactive compounds and contaminant-associated effects was assessed by means of in vivo and in vitro assays using different extractable fractions of surface sediments from a contaminated coastal lagoon (Mar Menor, SE Spain). Sediment elutriates and clean seawater, previously exposed to whole sediment, were used for assessing the in vivo toxicity on embryo development of the sea urchin Paracentrotus lividus. Agonist and antagonist activities relating to estrogen and androgen receptors and agonist activities on aryl hydrocarbon receptor (expressed as ethoxyresorufin-O-deethylase (EROD) activities) were investigated in sediment extracts by using HER-Luc, AR-EcoScreenTM and fibroblast-like RTG-2 cell lines. Embryotoxicity effects were greater for sediment elutriates than those incubated in sediment-water interphase, implying that diffusion of bioactive chemicals can occur from sediments to sea water column, favoured by sediment disturbance events. In vitro results show the occurrence in extracts of compounds with estrogen antagonism, androgen antagonism and dioxin-like activities. Multidimensional scaling analysis classified the sampling sites into four sub-clusters according to their chemical-physical and biological similarities, relating in vitro bioactivity with the total organic carbon and known organic chemical load, with particular reference to total sum of PAHs, PCB 180, p,p-DDE and terbuthylazine. Overall, results pointed to the presence of unknown or unanalyzed biologically-active compounds in the sediments, mostly associated with the extracted polar fraction of the Mar Menor lagoon sediments. Our findings provide relevant information to be considered for the environmental management of contaminated coastal lagoons.Postprint3,20

    Toxicity profiling of marine surface sediments: A case study using rapid screening bioassays of exhaustive total extracts, elutriates and passive sampler extracts

    No full text
    This study was carried out in the framework of the ICON project (Integrated Assessment of Contaminant Impacts on the North Sea) (Hylland et al., 2017a) and aimed (1) to evaluate the toxicity of marine sediments using a battery of rapid toxicity bioassays, and; (2) to explore the applicability and data interpretation of in vitro toxicity profiling of sediment extracts obtained from ex situ passive sampling. Sediment samples were collected at 12 selected (estuarine, coastal, offshore) sites in the North Sea, Icelandic waters (as reference sites), south-western Baltic Sea and western Mediterranean during autumn 2008. Organic extracts using a mild non-destructive clean-up procedure were prepared from total sediment and silicone passive samplers and tested with five in vitro bioassays: DR-Luc bioassay, ER-Luc bioassay, AR-EcoScreen bioassay, transthyretin (TTR) binding assay, and Vibrio fischeri bioluminescence bioassay. In vitro toxicity profiling of total sediment and silicone passive sampler extracts showed the presence of multiple organic contaminations by arylhydrocarbon receptor agonists (e.g. polycyclic aromatic hydrocarbons) and endocrine-active compounds, as well as non-specific toxicity caused by organic contaminants, at virtually all sampling sites. In vitro responses to total sediment extracts from coastal/estuarine sites were significantly different from those in offshore sites (p < 0.05). Several bioassays of passive sampler extracts showed highest activity in some offshore sediment samples. Impact on embryogenesis success and larval growth in undiluted sediment elutriates was shown at some sites using the in vivo sea urchin embryo test. The observed toxicity profiles could only partially be explained by the chemical target analysis, indicating the presence of unknown or unanalysed biologically-active compounds in the sediments. In vitro bioassay testing with silicone passive sampler extracts of sediments is a promising tool to assess the toxic potency of the bioavailable fraction of hydrophobic sediment contaminants, but further work will be needed before it can be routinely applied for sediment quality assessment.Postprin
    corecore