68 research outputs found

    Cognitive-affective neural plasticity following active-controlled mindfulness intervention.

    Get PDF
    Mindfulness meditation is a set of attention-based, regulatory, and self-inquiry training regimes. Although the impact of mindfulness training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act through interoceptive salience and attentional control mechanisms, but until now conflicting evidence from behavioral and neural measures renders difficult distinguishing their respective roles. To resolve this question we conducted a fully randomized 6 week longitudinal trial of MT, explicitly controlling for cognitive and treatment effects with an active-control group. We measured behavioral metacognition and whole-brain blood oxygenation level-dependent (BOLD) signals using functional MRI during an affective Stroop task before and after intervention in healthy human subjects. Although both groups improved significantly on a response-inhibition task, only the MT group showed reduced affective Stroop conflict. Moreover, the MT group displayed greater dorsolateral prefrontal cortex responses during executive processing, consistent with increased recruitment of top-down mechanisms to resolve conflict. In contrast, we did not observe overall group-by-time interactions on negative affect-related reaction times or BOLD responses. However, only participants with the greatest amount of MT practice showed improvements in response inhibition and increased recruitment of dorsal anterior cingulate cortex, medial prefrontal cortex, and right anterior insula during negative valence processing. Our findings highlight the importance of active control in MT research, indicate unique neural mechanisms for progressive stages of mindfulness training, and suggest that optimal application of MT may differ depending on context, contrary to a one-size-fits-all approach

    MicroRNAs and histone deacetylase inhibition-mediated protection against inflammatory β-cell damage.

    Get PDF
    Inflammatory β-cell failure contributes to type 1 and type 2 diabetes pathogenesis. Pro-inflammatory cytokines cause β-cell dysfunction and apoptosis, and lysine deacetylase inhibitors (KDACi) prevent β-cell failure in vitro and in vivo, in part by reducing NF-κB transcriptional activity. We investigated the hypothesis that the protective effect of KDACi involves transcriptional regulation of microRNAs (miRs), potential new targets in diabetes treatment. Insulin-producing INS1 cells were cultured with or without the broad-spectrum KDACi Givinostat, prior to exposure to the pro-inflammatory cytokines IL-1β and IFN-γ for 6 h or 24 h, and miR expression was profiled with miR array. Thirteen miRs (miR-7a-2-3p, miR-29c-3p, miR-96-5p, miR-101a-3p, miR-140-5p, miR-146a-5p, miR-146b-5p, miR-340-5p, miR-384-5p, miR-455-5p, miR-466b-2-3p, miR-652-5p, and miR-3584-5p) were regulated by both cytokines and Givinostat, and nine were examined by qRT-PCR. miR-146a-5p was strongly regulated by cytokines and KDACi and was analyzed further. miR-146a-5p expression was induced by cytokines in rat and human islets. Cytokine-induced miR-146a-5p expression was specific for INS1 and β-TC3 cells, whereas α-TC1 cells exhibited a higher basal expression. Transfection of INS1 cells with miR-146a-5p reduced cytokine signaling, including the activity of NF-κB and iNOS promoters, as well as NO production and protein levels of iNOS and its own direct targets TNF receptor associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1). miR-146a-5p was elevated in the pancreas of diabetes-prone BB-DP rats at diabetes onset, suggesting that miR-146a-5p could play a role in type 1 diabetes development. The miR array of cytokine-exposed INS1 cells rescued by KDACi revealed several other miRs potentially involved in cytokine-induced β-cell apoptosis, demonstrating the strength of this approach

    Increased Cortical Thickness in Sports Experts: A Comparison of Diving Players with the Controls

    Get PDF
    Sports experts represent a population of people who have acquired expertise in sports training and competition. Recently, the number of studies on sports experts has increased; however, neuroanatomical changes following extensive training are not fully understood. In this study, we used cortical thickness measurement to investigate the brain anatomical characteristics of professional divers with extensive training experience. A comparison of the brain anatomical characteristics of the non-athlete group with those of the athlete group revealed three regions with significantly increased cortical thickness in the athlete group. These regions included the left superior temporal sulcus, the right orbitofrontal cortex and the right parahippocampal gyrus. Moreover, a significant positive correlation between the mean cortical thickness of the right parahippocampal gyrus and the training experience was detected, which might indicate the effect of extensive training on diving players' brain structure

    Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data

    Get PDF
    Background: Patients who have had a stroke with unknown time of onset have been previously excluded from thrombolysis. We aimed to establish whether intravenous alteplase is safe and effective in such patients when salvageable tissue has been identified with imaging biomarkers. Methods: We did a systematic review and meta-analysis of individual patient data for trials published before Sept 21, 2020. Randomised trials of intravenous alteplase versus standard of care or placebo in adults with stroke with unknown time of onset with perfusion-diffusion MRI, perfusion CT, or MRI with diffusion weighted imaging-fluid attenuated inversion recovery (DWI-FLAIR) mismatch were eligible. The primary outcome was favourable functional outcome (score of 0–1 on the modified Rankin Scale [mRS]) at 90 days indicating no disability using an unconditional mixed-effect logistic-regression model fitted to estimate the treatment effect. Secondary outcomes were mRS shift towards a better functional outcome and independent outcome (mRS 0–2) at 90 days. Safety outcomes included death, severe disability or death (mRS score 4–6), and symptomatic intracranial haemorrhage. This study is registered with PROSPERO, CRD42020166903. Findings: Of 249 identified abstracts, four trials met our eligibility criteria for inclusion: WAKE-UP, EXTEND, THAWS, and ECASS-4. The four trials provided individual patient data for 843 individuals, of whom 429 (51%) were assigned to alteplase and 414 (49%) to placebo or standard care. A favourable outcome occurred in 199 (47%) of 420 patients with alteplase and in 160 (39%) of 409 patients among controls (adjusted odds ratio [OR] 1·49 [95% CI 1·10–2·03]; p=0·011), with low heterogeneity across studies (I2=27%). Alteplase was associated with a significant shift towards better functional outcome (adjusted common OR 1·38 [95% CI 1·05–1·80]; p=0·019), and a higher odds of independent outcome (adjusted OR 1·50 [1·06–2·12]; p=0·022). In the alteplase group, 90 (21%) patients were severely disabled or died (mRS score 4–6), compared with 102 (25%) patients in the control group (adjusted OR 0·76 [0·52–1·11]; p=0·15). 27 (6%) patients died in the alteplase group and 14 (3%) patients died among controls (adjusted OR 2·06 [1·03–4·09]; p=0·040). The prevalence of symptomatic intracranial haemorrhage was higher in the alteplase group than among controls (11 [3%] vs two [<1%], adjusted OR 5·58 [1·22–25·50]; p=0·024). Interpretation: In patients who have had a stroke with unknown time of onset with a DWI-FLAIR or perfusion mismatch, intravenous alteplase resulted in better functional outcome at 90 days than placebo or standard care. A net benefit was observed for all functional outcomes despite an increased risk of symptomatic intracranial haemorrhage. Although there were more deaths with alteplase than placebo, there were fewer cases of severe disability or death. Funding: None

    The relation of metabolism and myoelectrical activity in human skeletal muscle investigated by simultaneous 31P nuclear magnetic resonance spectroscopy and surface electromyography

    No full text
    corecore