696 research outputs found

    Cooperative Dynamics in Unentangled Polymer Fluids

    Full text link
    We present a Generalized Langevin Equation for the dynamics of interacting semiflexible polymer chains, undergoing slow cooperative dynamics. The calculated Gaussian intermolecular center-of-mass and monomer potentials, wich enter the GLE, are in quantitative agreement with computer simulation data. The experimentally observed, short-time subdiffusive regime of the polymer mean-square displacements, emerges here from the competition between the intramolecular and the intermolecular mean-force potentials.Comment: 9 pages, latex, 3 figure

    Peripheral blood marker of residual acute leukemia after hematopoietic cell transplantation using multi-plex digital droplet PCR

    Full text link
    BACKGROUND Relapse remains the primary cause of death after hematopoietic cell transplantation (HCT) for acute leukemia. The ability to identify minimal/measurable residual disease (MRD) via the blood could identify patients earlier when immunologic interventions may be more successful. We evaluated a new test that could quantify blood tumor mRNA as leukemia MRD surveillance using droplet digital PCR (ddPCR). METHODS The multiplex ddPCR assay was developed using tumor cell lines positive for the tumor associated antigens (TAA: WT1, PRAME, BIRC5), with homeostatic ABL1. On IRB-approved protocols, RNA was isolated from mononuclear cells from acute leukemia patients after HCT (n = 31 subjects; n = 91 specimens) and healthy donors (n = 20). ddPCR simultaneously quantitated mRNA expression of WT1, PRAME, BIRC5, and ABL1 and the TAA/ABL1 blood ratio was measured in patients with and without active leukemia after HCT. RESULTS Tumor cell lines confirmed quantitation of TAAs. In patients with active acute leukemia after HCT (MRD+ or relapse; n=19), the blood levels of WT1/ABL1, PRAME/ABL1, and BIRC5/ABL1 exceeded healthy donors (p<0.0001, p=0.0286, and p=0.0064 respectively). Active disease status was associated with TAA positivity (1+ TAA vs 0 TAA) with an odds ratio=10.67, (p=0.0070, 95% confidence interval 1.91 - 59.62). The area under the curve is 0.7544. Changes in ddPCR correlated with disease response captured on standard of care tests, accurately denoting positive or negative disease burden in 15/16 (95%). Of patients with MRD+ or relapsed leukemia after HCT, 84% were positive for at least one TAA/ABL1 in the peripheral blood. In summary, we have developed a new method for blood MRD monitoring of leukemia after HCT and present preliminary data that the TAA/ABL1 ratio may may serve as a novel surrogate biomarker for relapse of acute leukemia after HCT

    Digital Twin for Power Plants, Energy Savings and other Complex Engineering Systems

    Get PDF
    Digital Twin (DT) is a digital representation of a machine, service, or production system that consists of models, information, and data used to characterize properties, conditions, and behavior of the system. Renewable energy integration will make future power plants more complex with addition of varieties of Power-to-X technologies, Electrolysis to green hydrogen, onsite storage and transport of hydrogen, and use of pure or blended hydrogen, etc. These future power plants need robust DT architecture to achieve high Reliability, Availability and Maintainability at lower cost. In this research work, a comprehensive and robust DT architecture for power plants is proposed that also can be implemented in other similar complex capital-intensive large engineering systems. The novelty and advantages of the proposed DT is asserted by reviewing the state-of-the-art of DT in energy industries and its potential to transform these industries. Then the proposed DT architecture and its five components are explained and discussed. More specifically, the main contributions of the present work include: 1. Overview of DT key research and development for energy savings applications to consider important findings, research gaps and the needed future development for the proposed DT for power plants. 2. Overview of DT key research for power plants including applications, frameworks and architectures to consider important findings and to confirm the novelty and robustness of the proposed DT. 3. Proposing and demonstrating new robust DT architecture for power plants and other similar complex capital-intensive large engineering systems

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus
    corecore