100 research outputs found

    Isoscaling Studies of Fission - a Sensitive Probe into the Dynamics of Scission

    Get PDF
    The fragment yield ratios were investigated in the fission of 238,233U targets induced by 14 MeV neutrons. The isoscaling behavior was typically observed for the isotopic chains of fragments ranging from the proton-rich to the most neutron-rich ones. The observed high sensitivity of neutron-rich heavy fragments to the target neutron content suggests fission as a source of neutron-rich heavy nuclei for present and future rare ion beam facilities, allowing studies of nuclear properties towards the neutron drip-line and investigations of the conditions for nucleosynthesis of heavy nuclei. The breakdowns of the isoscaling behavior around N=62 and N=80 manifest the effect of two shell closures on the dynamics of scission. The shell closure around N=64 can be explained by the deformed shell. The investigation of isoscaling in the spontaneous fission of 248,244Cm further supports such conclusion. The Z-dependence of the isoscaling parameter exhibits a structure which can be possibly related to details of scission dynamics. The fission isoscaling studies can be a suitable tool for the investigation of possible new pathways to synthesize still heavier nuclei.Comment: 7 pages, 3 figures, RevTex, final version, to appear in Phys. Rev. C as a regular articl

    Tracing the evolution of the symmetry energy of hot nuclear fragments from the compound nucleus towards multifragmentation

    Get PDF
    The evolution of the symmetry energy coefficient of the binding energy of hot fragments with increasing excitation is explored in multifragmentation processes following heavy-ion collisions below the Fermi energy. In this work, high-resolution mass spectrometric data on isotopic distributions of projectile-like fragments from collisions of 25 MeV/nucleon 86Kr and 64Ni beams on heavy neutron-rich targets are systematically compared to calculations involving the Statistical Multifragmentation Model. The study reveals a gradual decrease of the symmetry energy coefficient from 25 MeV at the compound nucleus regime (E*/A < 2 MeV) towards 15 MeV in the bulk multifragmentation regime (E*/A > 4 MeV). The ensuing isotopic distributions of the hot fragments are found to be very wide and extend towards the neutron drip-line. These findings may have important implications to the composition and evolution of hot astrophysical environments, such as core-collapse supernova.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Isotopic Scaling of Heavy Projectile Residues from the collisions of 25 MeV/nucleon 86Kr with 124Sn, 112Sn and 64Ni, 58Ni

    Full text link
    The scaling of the yields of heavy projectile residues from the reactions of 25 MeV/nucleon 86Kr projectiles with 124Sn,112Sn and 64Ni, 58Nitargets is studied. Isotopically resolved yield distributions of projectile fragments in the range Z=10-36 from these reaction pairs were measured with the MARS recoil separator in the angular range 2.7-5.3 degrees. The velocities of the residues, monotonically decreasing with Z down to Z~26-28, are employed to characterize the excitation energy. The yield ratios R21(N,Z) for each pair of systems are found to exhibit isotopic scaling (isoscaling), namely, an exponential dependence on the fragment atomic number Z and neutron number N. The isoscaling is found to occur in the residue Z range corresponding to the maximum observed excitation energies. The corresponding isoscaling parameters are alpha=0.43 and beta=-0.50 for the Kr+Sn system and alpha=0.27 and beta=-0.34 for the Kr+Ni system. For the Kr+Sn system, for which the experimental angular acceptance range lies inside the grazing angle, isoscaling was found to occur for Z<26 and N<34. For heavier fragments from Kr+Sn, the parameters vary monotonically, alpha decreasing with Z and beta increasing with N. This variation is found to be related to the evolution towards isospin equilibration and, as such, it can serve as a tracer of the N/Z equilibration process. The present heavy-residue data extend the observation of isotopic scaling from the intermediate mass fragment region to the heavy-residue region. Such high-resolution mass spectrometric data can provide important information on the role of isospin in peripheral and mid-peripheral collisions, complementary to that accessible from modern large-acceptance multidetector devices.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements

    Full text link
    The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.Comment: 8 pages, 7 figures, talk presented at 7th International School-Seminar on Heavy-Ion Physics, May 27 - June 1, 2002, Dubna, Russi

    Enhanced Production of Neutron-Rich Rare Isotopes in Peripheral Collisions at Fermi Energies

    Get PDF
    A large enhancement in the production of neutron-rich projectile residues is observed in the reactions of a 25 MeV/nucleon 86Kr beam with the neutron rich 124Sn and 64Ni targets relative to the predictions of the EPAX parametrization of high-energy fragmentation, as well as relative to the reaction with the less neutron-rich 112Sn target. The data demonstrate the significant effect of the target neutron-to-proton ratio (N/Z) in peripheral collisions at Fermi energies. A hybrid model based on a deep-inelastic transfer code (DIT) followed by a statistical de-excitation code appears to account for part of the observed large cross sections. The DIT simulation indicates that the production of the neutron-rich nuclides in these reactions is associated with peripheral nucleon exchange. In such peripheral encounters, the neutron skins of the neutron-rich 124Sn and 64Ni target nuclei may play an important role. From a practical viewpoint, such reactions between massive neutron-rich nuclei offer a novel and attractive synthetic avenue to access extremely neutron-rich rare isotopes towards the neutron-drip line.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    A new technique for elucidating β\beta-decay schemes which involve daughter nuclei with very low energy excited states

    Get PDF
    A new technique of elucidating β\beta-decay schemes of isotopes with large density of states at low excitation energies has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique has been demonstrated on the example of 183Hg decay. Mass-separated samples of 183Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ\gamma rays energies to be determined with a precision of a few tens of electronvolts, which was sufficient for the analysis of the Rydberg-Ritz combinations in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ\gamma rays arising from the decay of 183Hg from those due to the daughter decays

    Inhomogeneous isospin distribution in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Get PDF
    We have created quasiprojectiles of varying isospin via peripheral reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon. The quasiprojectiles have been reconstructed from completely isotopically identified fragments. The difference in N/Z of the reconstructed quasiprojectiles allows the investigation of the disassembly as a function of the isospin of the fragmenting system. The isobaric yield ratio 3H/3He depends strongly on N/Z ratio of quasiprojectiles. The dependences of mean fragment multiplicity and mean N/Z ratio of the fragments on N/Z ratio of the quasiprojectile are different for light charged particles and intermediate mass fragments. Observation of a different N/Z ratio of light charged particles and intermediate mass fragments is consistent with an inhomogeneous distribution of isospin in the fragmenting system.Comment: 5 pages, 4 Postscript figures, RevTe

    Effect of nucleon exchange on projectile multifragmentation in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Full text link
    Multifragmentation of quasiprojectiles was studied in reactions of 28Si beam with 112Sn and 124Sn targets at projectile energies 30 and 50 MeV/nucleon. The quasiprojectile observables were reconstructed using isotopically identified charged particles with Z_f <= 5 detected at forward angles. The nucleon exchange between projectile and target was investigated using isospin and excitation energy of reconstructed quasiprojectile. For events with total reconstructed charge equal to the charge of the beam (Z_tot = 14) the influence of beam energy and target isospin on neutron transfer was studied in detail. Simulations employing subsequently model of deep inelastic transfer, statistical model of multifragmentation and software replica of FAUST detector array were carried out. A concept of deep inelastic transfer provides good description of production of highly excited quasiprojectiles. The isospin and excitation energy of quasiprojectile were described with good overall agreement. The fragment multiplicity, charge and isospin were reproduced satisfactorily. The range of contributing impact parameters was determined using backtracing procedure.Comment: 11 pages, 8 Postscript figures, LaTeX, to appear in Phys. Rev. C ( Dec 2000

    Asymmetry Dependence of the Nuclear Caloric Curve

    Get PDF
    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A=50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry (N-Z)/A. An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei
    • …
    corecore