72 research outputs found

    The isotropic remnant of the CO2 near-fully depolarized Raman 2v3 overtone

    Get PDF
    In a recent paper [M. Chrysos, I. A. Verzhbitskiy, F. Rachet, and A. P. Kouzov, J. Chem. Phys. 134, 044318 (2011)], we showed that, in CO2, the 2 nu(3) transition generates a Raman line spectrum that is 98% depolarized, a property in agreement with general symmetry rules. Here, we present an extensive analysis, experimental and theoretical, of the isotropic remnant of this overtone. The isotropic spectrum turned out to be 45 times less intense than its anisotropic counterpart and to have a moment that is 350 times smaller than the moment of the anisotropic spectrum, in excellent agreement with theoretical predictions. Once the measured intensity (along with other data exclusively experimental) was fed back into the formula of the moment, a value for the CO2 mean-polarizability asymmetric stretch derivative partial derivative(2)(alpha) over bar/partial derivative q(3)(2) was returned that matches the best ab initio prediction to better than 4%. Agreement, in order of magnitude, was found between the intensity reported herein and that reported in the sole prior study of this overtone [G. Tejeda, B. Mate, and S. Montero, J. Chem. Phys. 103, 568 (1995)]. (C) 2011 American Institute of Physics. [doi:10.1063/1.3557820

    Effect of the excitation energy, type, and amount of defects

    Get PDF
    We present a detailed Raman study of defective graphene samples containing specific types of defects. In particular, we compared sp3 sites, vacancies, and substitutional Boron atoms. We find that the ratio between the D and G peak intensities, I(D)/I(G), does not depend on the geometry of the defect (within the Raman spectrometer resolution). In contrast, in the limit of low defect concentration, the ratio between the D′ and G peak intensities is higher for vacancies than sp3 sites. By using the local activation model, we attribute this difference to the term CS,x, representing the Raman cross section of I(x)/I(G) associated with the distortion of the crystal lattice after defect introduction per unit of damaged area, where x = D or D′. We observed that CS,D=0 for all the defects analyzed, while CS,D′ of vacancies is 2.5 times larger than CS,D′ of sp3 sites. This makes I(D)/I(D′) strongly sensitive to the nature of the defect. We also show that the exact dependence of I(D)/I(D′) on the excitation energy may be affected by the nature of the defect. These results can be used to obtain further insights into the Raman scattering process (in particular for the D′ peak) in order to improve our understanding and modeling of defects in graphene

    Evidence for an isotropic signature in double vibrational collision-induced Raman scattering: A point-polarizable molecule model

    Get PDF
    The particularly weak isotropic spectrum of the recently reported [ Verzhbitskiy et al. Phys. Rev. A 81 012702 (2010)] nearly depolarized collision-induced Raman scattering band SF6(ν1)+N2(ν1) at room temperature was obtained and is presented here. The spectrum was extracted from high-quality measurements of two independent incident-field polarization scattering components. Its zero-order moment was found to be about 200 times smaller than that of its anisotropic counterpart. Agreement, both in spectral shape and in intensity, was found with predictions based on the dipole-induced dipole polarization model once corrected for the very substantial back-induction, dispersion, and dipole-induced quadrupole-induced dipole interaction mechanisms, all of which were considered within the model framework of two point-polarizable molecules. Quantum-mechanical calculations revealed a large contribution from bound and predissociating dimers that amounts to more than one-third of the total isotropic scattering intensity

    Measuring valley polarization in two-dimensional materials with second-harmonic spectroscopy

    Get PDF
    A population imbalance at different valleys of an electronic system lowers its effective rotational symmetry. We introduce a technique to measure such imbalance - a valley polarization - that exploits the unique fingerprints of this symmetry reduction in the polarization-dependent second-harmonic generation (SHG). We present the principle and detection scheme in the context of hexagonal two-dimensional crystals, which include graphene-based systems and the family of transition metal dichalcogenides, and provide a direct experimental demonstration using a 2H-MoSe2_{2} monolayer at room temperature. We deliberately use the simplest possible setup, where a single pulsed laser beam simultaneously controls the valley imbalance and tracks the SHG process. We further developed a model of the transient population dynamics which analytically describes the valley-induced SHG rotation in very good agreement with the experiment. In addition to providing the first experimental demonstration of the effect, this work establishes a conceptually simple, com-pact and transferable way of measuring instantaneous valley polarization, with direct applicability in the nascent field of valleytronics

    The depolarized Raman 2 nu(3) overtone of CO2: A line-mixing shape analysis

    Get PDF
    In a recent article we showed that the 2 nu(3) transition of CO2 gives rise to a Raman spectrum that is almost entirely depolarized [M. Chrysos, I. A. Verzhbitskiy, F. Rachet, and A. P. Kouzov, J. Chem. Phys. 134, 044318 (2011)]. In the present article, we go further forward in the study of this overtone by reporting a first-principles shape analysis of its depolarized spectrum at room temperature. As a first step in our analysis, a model assuming isolated Lorentzian line shapes was applied, which at low gas densities turns out to be sufficient for qualitative conclusions. As the next step, a sophisticated approach was developed on the basis of the extended strong-collision model in order to properly account for the heavy line mixing between rotational lines. Whereas a marked deviation between model and measured spectra was observed upon application of the simpler model, striking agreement even at the highest CO2 density was found on applying the sophisticated one. Accurate calculated data were used for the rotational line broadening coefficients without resort to arbitrary parameters. Values for the vibrational shift scaling linearly with the density of the gas are given

    Are asymmetric stretch Raman spectra by centrosymmetric molecules depolarized ?: The 2v3 overtone of CO2

    Get PDF
    Molecular vibrations that are not totally symmetrical give rise to depolarized lines [P. Atkins and J. de Paula, Atkins Physical Chemistry (Oxford University Press, UK, 2006), p. 464]. But in the case of stretching vibrations in centrosymmetric molecules, the statement has so far not been conclusively verified. It is the purpose of this article to report a rigorous experimental and theoretical analysis of the 2 nu(3) band of CO2-the first overtone of the asymmetrical stretch vibration. The anisotropic spectrum was extracted and its spectral moment calculated from light-scattering measurements, taken at room temperature and for a wide range of CO2-gas densities. Evidence for a near-entirely depolarized Raman band is provided, with integrated depolarization ratio eta(int) = 6/7.16, closely approaching the upper bound eta(max) = 6/7. Agreement with theoretical predictions is found, on the basis of quality ab initio data for polarizability properties, provided that electro-optical and mechanical anharmonicity and intermode coupling effects between symmetric nu(1) and antisymmetric nu(3) stretching vibrations are incorporated

    Shape Analysis of the Raman CO2 Antisymmetric Stretch Overtone band

    Get PDF
    Date du colloque&nbsp;: 06/2010</p
    • …
    corecore