56 research outputs found

    Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae:basic and agronomic aspects

    Get PDF
    Nitrogen cycling in agroecosystems is heavily dependent upon arbuscular mycorrhizal fungi (AMF) present in the soil microbiome. These fungi develop obligate symbioses with various host plant species, thus increasing their ability to acquire nutrients. However, AMF are particularly sensitive to physical, chemical and biological disturbances caused by human actions that limit their establishment. For a more sustainable agriculture, it will be necessary to further investigate which agricultural practices could be favorable to maximize the benefits of AMF to improve crop nitrogen use efficiency (NUE), thus reducing nitrogen (N) fertilizer usage. Direct seeding, mulch-based cropping systems prevent soil mycelium disruption and increase AMF propagule abundance. Such cropping systems lead to more efficient root colonization by AMF and thus a better establishment of the plant/fungal symbiosis. In addition, the use of continuous cover cropping systems can also enhance the formation of more efficient interconnected hyphal networks between mycorrhizae colonized plants. Taking into account both fundamental and agronomic aspects of mineral nutrition by plant/AMF symbioses, we have critically described, how improving fungal colonization through the reduction of soil perturbation and maintenance of an ecological balance could be helpful for increasing crop NUE

    Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization

    Get PDF
    © 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or cover crops with legumes for 5 years under a low biomass return in industrial crop production have a positive effect on: i) upper soil C content and microbial enzymes, irrespective of N fertilization regime; ii) soil microbial functional diversity in the absence of N fertilization

    Study of TIMP-1 interaction with its receptors

    No full text
    Le TIMP-1, inhibiteur naturel des métalloprotéinases matricielles, exerce des effets pléïotropes indépendants de l'inhibition des MMPs et participe au développement de certains cancers et maladies neurodégénératives. Ces effets cytokiniques du TIMP-1 impliquent sa liaison à des récepteurs membranaires dont certains sont caractérisés, la glycoprotéine CD63/intégrine beta 1 et le complexe pro MMP-9/CD44. Cependant les acides aminés ou les domaines du TIMP-1 se liant à ces récepteurs ne sont pas identifiés. Les travaux réalisés au cours de cette thèse mettent en évidence un nouveau récepteur du TIMP-1, la protéine LRP-1. Dans les neurones corticaux murins, le TIMP-1 se fixe aux domaines DII et DIV de LRP-1, est endocyté et induit une réduction de la taille des neurites ainsi qu'une augmentation du volume des cônes de croissance. Afin de caractériser cette interaction, nous avons utilisé une approche originale de modélisation moléculaire associant les analyses de modes normaux et la dynamique moléculaire. Ces analyses in silico ont permis d'identifier un mouvement de pince entre les domaines N et C-terminaux du TIMP-1. Nous avons muté trois résidus (F12, K47 et W105) localisés dans une région essentielle d'un point vue énergétique à l'exécution de ce mouvement. Ces trois mutants n'ont pas d'effet sur la longueur du réseau neuritique et ne sont pas endocytés par LRP-1. En revanche, ils interagissent avec les 2 autres récepteurs (CD63 et proMMP-9) et reproduisent les effets du TIMP-1 sauvage. De plus, nous avons identifié une séquence de 6 acides aminés localisée dans le domaine extracellulaire I de CD63 et essentielle à la liaison avec le TIMP-1. L'ensemble de ces travaux a permis l'identification de régions impliquées dans l'interaction du TIMP-1 avec ses différents récepteurs et pourrait permettre le développement de nouveaux outils pharmacologiques ciblant les activités cytokiniques du TIMP-1.TIMP-1, a natural inhibitor of matrix metalloproteinases, exerts pleiotropic effects independent of MMP inhibition and thus participates to the development of some cancers and neurodegenerative disorders. These cytokine-like activities require TIMP-1 binding to membrane receptors. Up to date two receptors, CD63/integrin beta 1 and proMMP-9/CD44, have been characterized. Nevertheless, TIMP-1 residues or regions binding these receptors remain unknown. In this work, we have identified the protein LRP-1 as a new receptor for TIMP 1. In mouse cortical neurons, TIMP-1 preferentially binds DII and DIV domains of LRP-1, is internalized via a LRP-1-dependent endocytosis, reduces neurite length and increases growth cone volume. To go deeper into TIMP-1/LRP-1 interaction, we used an original molecular modeling approach which combined normal mode analysis and molecular dynamic. These in silico studies allow us to point out a clamp movement between the N- and C-terminal domains of TIMP-1. Three residues localized in a region that seems essential for the movement have been mutated (F12, K47 and W105) and single mutants have been produced. These mutants do not reduce neurite outgrowth and are not internalized by LRP-1. In contrast, they interact with the two others receptors proMMP-9 and CD63 and induce associated biological effects. Furthermore, we have identified a sequence of six residues localized in the CD63 extracellular domain I and essential for TIMP 1 binding. The set of our data highlighted new regions of TIMP-1 interacting with its receptors and could lead to design novel therapeutic agents targeting the TIMP-1 cytokine like activities

    LRP-1: A Checkpoint for the Extracellular Matrix Proteolysis

    Get PDF
    Low-density lipoprotein receptor-related protein-(LRP-1) is a large endocytic receptor that binds more than 35 ligands and exhibits signaling properties. Proteinases capable of degrading extracellular matrix (ECM), called matrix proteinases in this paper, are mainly serine proteinases: the activators of plasminogen into plasmin, tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, and the members of the matrix metalloproteinase (MMP) family. LRP-1 is responsible for clearing matrix proteinases, complexed or not with inhibitors. This paper attempts to summarize some aspects on the cellular and molecular bases of endocytic and signaling functions of LRP-1 that modulate extra- and pericellular levels of matrix proteinases

    Distinct angiogenic profiles between papillary and reticular fibroblasts

    No full text
    International audienc

    Spore Density of Arbuscular Mycorrhizal Fungi is Fostered by Six Years of a No-Till System and is Correlated with Environmental Parameters in a Silty Loam Soil

    No full text
    Arbuscular mycorrhizal fungi (AMF) play major roles in nutrient acquisition by crops and are key actors of agroecosystems productivity. However, agricultural practices can have deleterious effects on plant–fungi symbiosis establishment in soils, thus inhibiting its potential benefits on plant growth and development. Therefore, we have studied the impact of different soil management techniques, including conventional moldboard ploughing and no-till under an optimal nitrogen (N) fertilization regime and in the absence of N fertilization, on AMF spore density and soil chemical, physical, and biological indicators in the top 20 cm of the soil horizon. A field experiment conducted over six years revealed that AMF spore density was significantly lower under conventional tillage (CT) combined with intensive synthetic N fertilization. Under no-till (NT) conditions, the density of AMF spore was at least two-fold higher, even under intensive N fertilization conditions. We also observed that there were positive correlations between spore density, soil dehydrogenase enzyme activity, and soil penetration resistance and negative correlations with soil phosphorus and mineral N contents. Therefore, soil dehydrogenase activity and soil penetration resistance can be considered as good indicators of soil quality in agrosystems. Furthermore, the high nitrate content of ploughed soils appears to be detrimental both for the dehydrogenase enzyme activity and the production of AMF spores. It can be concluded that no-till, by preventing soil from structural and chemical disturbances, is a farming system that preserves the entire fungal life cycle and as such the production of viable spores of AMF, even under intensive N fertilization

    Investigating the combined effect of tillage, nitrogen fertilization and cover crops on nitrogen use efficiency in winter wheat

    No full text
    A field study was conducted in northern France over two consecutive years to evaluate the combined effect of conventional tillage (CT) vs no till (NT) with or without cover crops (cc) and nitrogen (N) fertilization on various agronomic traits related to N use efficiency in winter wheat. Five years after conversion of CT to NT, significant increases in N use efficiency, N utilization efficiency, N agronomic efficiency, N partial factor productivity, N apparent recovery fraction and N remobilization were observed under three N fertilization regimes (0, 161, 215 kg ha(-1)). It was also observed that grain yield and grain N content were similar under CT and NT. The N nutrition index was higher under NT at the three rates of N fertilization. Moreover, N use efficiency related traits were increased in the presence of cc both under NT and CT. Thus, agronomic practices based on continuous NT in the presence of cc, appear to be promising strategies to increase N use efficiency in wheat, while reducing both the use and the loss of N-based fertilizers

    Conversion to no-till improves maize nitrogen use efficiency in a continuous cover cropping system

    No full text
    A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize

    In Winter Wheat, No-Till Increases Mycorrhizal Colonization thus Reducing the Need for Nitrogen Fertilization

    No full text
    Arbuscular mycorrhizal fungi (AMF) play a major role in the uptake of nutrients by agricultural plants. Nevertheless, some agricultural practices can interrupt fungal-plant signaling and thus impede the establishment of the mycorrhizal symbiosis. A field experiment performed over a 5-year period demonstrated that both the absence of tillage and of nitrogen (N) fertilization improved AMF colonization of wheat roots. Moreover, under no-till conditions, N uptake and aboveground biomass production did not vary significantly between N-fertilized and N-unfertilized plots. In contrast, both N uptake and above ground biomass were much lower when N fertilizer was not added during conventional tillage. This finding strongly suggests that for wheat, no-till farming is a sustainable agricultural system that allows a gradual reduction in N fertilizer use by promoting AMF functionality and at the same time increasing N uptake
    • …
    corecore