66 research outputs found

    Tomographic Reconstruction of Mercury's Exosphere from MESSENGER Flyby Data

    Get PDF
    The exosphere of Mercury is among the best-studied examples of a common type of atmosphere, a surface-bounded exosphere. Mercury's exosphere was probed in 2008-2009 with Ultraviolet and Visible Spectrometer (UVVS) measurements obtained during three planetary flybys by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [1-3]. The measurements detailed the distribution of two previously known metallic constituents of Mercury's exosphere, Na and Ca, and indicated the presence in the gas phase of yet another metallic species, Mg. Such measurements can answer fundamental scientific questions regarding the relative importance of possible source and loss processes for exospheric species ejected from a surface boundary [4]. The trajectory of MESSENGER during the last of its three flybys provided the best spatial coverage prior to orbit insertion. The measurements by MESSENGER of Na, Ca, and Mg during the third flyby have been analyzed with a novel tomographic method. This approach maximizes the amount of information that can be extracted from line-of-sight measurements because it yields three-dimensional distributions of neutrals consistent with the data

    Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    Get PDF
    Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This source region and energy are consistent with data from the three MESSENGER flybys; whether this holds true for the data obtained in orbit is under investigation

    Limits to Mercury's Magnesium Exosphere from MESSENGER Second Flyby Observations

    Get PDF
    The discovery measurements of Mercury's exospheric magnesium, obtained by the MErcury Surface. Space ENvironment, GEochemistry. and Ranging (MESSENGER) probe during its second Mercury flyby, are modeled to constrain the source and loss processes for this neutral species. Fits to a Chamberlain exosphere reveal that at least two source temperatures are required to reconcile the distribution of magnesium measured far from and near the planet: a hot ejection process at the equivalent temperature of several tens of thousands of degrees K, and a competing, cooler source at temperatures as low as 400 K. For the energetic component, our models indicate that the column abundance that can be attributed to sputtering under constant southward interplanetary magnetic field (IMF) conditions is at least a factor of five less than the rate dictated by the measurements, Although highly uncertain, this result suggests that another energetic process, such as the rapid dissociation of exospheric MgO, may be the main source of the distant neutral component. If meteoroid and micrometeoroid impacts eject mainly molecules, the total amount of magnesium at altitudes exceeding approximately 100 km is found to be consistent with predictions by impact vaporization models for molecule lifetimes of no more than two minutes. Though a sharp increase in emission observed near the dawn terminator region can be reproduced if a single meteoroid enhanced the impact vapor at equatorial dawn, it is much more likely that observations in this region, which probe heights increasingly near the surface, indicate a reservoir of volatile Mg being acted upon by lower-energy source processes

    MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Get PDF
    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material

    Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Get PDF
    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere

    Observations of Metallic Species in Mercury's Exosphere

    Get PDF
    From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K

    Understanding Mercury's Exosphere: Models Derived from MESSENGER Observations

    Get PDF
    The observations of Mercury's exosphere described in Chapter 14 have led to many modeling efforts. Early models were based upon a few simple assumptions and primarily explored the dynamics of sodium atoms pushed anti-sunward by radiation pressure [Ip, 1986; Smyth and Marconi, 1995]. More recently, these early models have been superseded by simulations with an increasing number of interdependent source processes [Leblanc and Johnson, 2003; Mura et al., 2009; Leblanc and Johnson, 2010; Burger et al., 2010, 2012, 2014]. We briefly summarize the source and loss processes before describing the published exosphere models, first for the three species observed almost continuously during the MESSENGER mission by the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition2Spectrometer (MASCS), (Na, Mg and Ca), and then more briefly for other species that have been observed or for which new upper limits have been derived.15.1 Overview of Source and Loss Processes15.1.1 Source Processes15.1.1.1 Thermal DesorptionThermal desorption (or thermal evaporation) is the release of adsorbed atoms from a surface via heating. Thermal desorption is related to the binding energy of the atom on the surface and the vibrational frequency of the bound atom, such that the rate of thermal desorption is given by, (15.1)where TD
    • …
    corecore