6 research outputs found

    A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society

    Get PDF
    Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative–the IMiLI–is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators–learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators–learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships–a global societally relevant microbiology education ecosystem–in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us–individuals/communities/nations/the human world–and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091–1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.http://www.wileyonlinelibrary.com/journal/mbt2hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-01:No povertySDG-02:Zero HungerSDG-03:Good heatlh and well-beingSDG-04:Quality EducationSDG-06:Clean water and sanitationSDG-07:Affordable and clean energySDG-08:Decent work and economic growthSDG-12:Responsible consumption and productionSDG-13:Climate actionSDG-14:Life below wate

    Phthalate and alternative plasticizers in indwelling medical devices in pediatric intensive care units

    No full text
    The present study aimed to identify plasticizers present in indwelling plastic medical devices commonly used in the pediatric intensive care unit (PICU). We have analyzed a wide range of medical devices (n = 97) daily used in the PICUs of two academic hospitals in Belgium and the Netherlands. Identified compounds varied between the samples. Most of the indwelling medical devices and essential accessories were found to actively leach phthalates and alternative plasticizers. Results indicated that DEHP was predominantly present as plasticizer (60 of 97 samples), followed by bis(2-ethylhexyl) adipate (DEHA, 32 of 97), bis(2-ethylhexyl) terephthalate (DEHT, 24 of 97), tris(2-ethylhexyl) trimellitate (TOTM, 20 of 97), and tributyl-O-acetyl citrate (ATBC, 10 of 97). Other plasticizers, such as di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH, 2 of 97), di-isononyl phthalate (DiNP, 4 of 97), di(2-propylheptyl) phthalate (DPHP, 4 of 97) and di-isodecyl phthalate (DiDP, 2 of 97) were detected in < 5% of the investigated samples. Several devices contained multiple plasticizers, e.g. devices containing TOTM contained also DEHP and DEHT. Our data indicate that PICU patients are exposed to a wide range of plasticizers, including the controversial DEHP. Future studies should investigate the exposure to APs in children staying in the PICU and the possible health effects thereof.status: publishe

    Cost-effectiveness study of early versus late parenteral nutrition in critically ill children (PEPaNIC): preplanned secondary analysis of a multicentre randomised controlled trial

    Get PDF
    BACKGROUND: The multicentre randomised controlled PEPaNIC trial showed that withholding parenteral nutrition (PN) during the first week of critical illness in children was clinically superior to providing early PN. This study describes the cost-effectiveness of this new nutritional strategy. METHODS: Direct medical costs were calculated with use of a micro-costing approach. We compared the costs of late versus early initiation of PN (n = 673 versus n = 670 patients) in the Belgian and Dutch study populations from a hospital perspective, using Student's t test with bootstrapping. Main cost drivers were identified and the impact of new infections on the total costs was assessed. RESULTS: Mean direct medical costs for patients receiving late PN (€26.680, IQR €10.090-28.830 per patient) were 21% lower (-€7.180, p = 0.007) than for patients receiving early PN (€33.860, IQR €11.080-34.720). Since late PN was more effective and less costly, this strategy was superior to early PN. The lower costs for PN only contributed 2.1% to the total cost reduction. The main cost driver was intensive care hospitalisation costs (-€4.120, p = 0.003). The patients who acquired a new infection (14%) were responsible for 41% of the total costs. Sensitivity analyses confirmed consistency across both healthcare systems. CONCLUSIONS: Late initiation of PN decreased the direct medical costs for hospitalisation in critically ill children, beyond the expected lower costs for withholding PN. Avoiding new infections by late initiation of PN yielded a large cost reduction. Hence, late initiation of PN was superior to early initiation of PN largely via its effect on new infections. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01536275 . Registered on 16 February 2012.status: publishe

    Leukocyte telomere length in paediatric critical illness: effect of early parenteral nutrition

    Get PDF
    BACKGROUND: Children who have suffered from critical illnesses that required treatment in a paediatric intensive care unit (PICU) have long-term physical and neurodevelopmental impairments. The mechanisms underlying this legacy remain largely unknown. In patients suffering from chronic diseases hallmarked by inflammation and oxidative stress, poor long-term outcome has been associated with shorter telomeres. Shortened telomeres have also been reported to result from excessive food consumption and/or unhealthy nutrition. We investigated whether critically ill children admitted to the PICU have shorter-than-normal telomeres, and whether early parenteral nutrition (PN) independently affects telomere length when adjusting for known determinants of telomere length. METHODS: Telomere length was quantified in leukocyte DNA from 342 healthy children and from 1148 patients who had been enrolled in the multicenter, randomised controlled trial (RCT), PEPaNIC. These patients were randomly allocated to initiation of PN within 24 h (early PN) or to withholding PN for one week in PICU (late PN). The impact of early PN versus late PN on the change in telomere length from the first to last PICU-day was investigated with multivariable linear regression analyses. RESULTS: Leukocyte telomeres were 6% shorter than normal upon PICU admission (median 1.625 (IQR 1.446-1.825) telomere/single-copy-gene ratio (T/S) units vs. 1.727 (1.547-1.915) T/S-units in healthy children (P < 0.0001)). Adjusted for potential baseline determinants and leukocyte composition, early PN was associated with telomere shortening during PICU stay as compared with late PN (estimate early versus late PN -0.021 T/S-units, 95% CI -0.038; 0.004, P = 0.01). Other independent determinants of telomere length identified in this model were age, gender, baseline telomere length and fraction of neutrophils in the sample from which the DNA was extracted. Telomere shortening with early PN was independent of post-randomisation factors affected by early PN, including longer length of PICU stay, larger amounts of insulin and higher risk of infection. CONCLUSIONS: Shorter than normal leukocyte telomeres are present in critically ill children admitted to the PICU. Early initiation of PN further shortened telomeres, an effect that was independent of other determinants. Whether such telomere-shortening predisposes to long-term consequences of paediatric critical illness should be further investigated in a prospective follow-up study. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01536275 . Registered on 16 February 2012.status: publishe

    Outcomes in Newly Diagnosed Atrial Fibrillation and History of Acute Coronary Syndromes: Insights from GARFIELD-AF

    No full text
    BACKGROUND: Many patients with atrial fibrillation have concomitant coronary artery disease with or without acute coronary syndromes and are in need of additional antithrombotic therapy. There are few data on the long-term clinical outcome of atrial fibrillation patients with a history of acute coronary syndrome. This is a 2-year study of atrial fibrillation patients with or without a history of acute coronary syndromes
    corecore