8 research outputs found

    Evolution of insect innate immunity through domestication of bacterial toxins

    Get PDF
    Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B ( cdtB ) and apoptosis-inducing protein of 56 kDa ( aip56) , were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular ( cdtB ) or fused copies ( cdtB::aip56 ) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo’s serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals

    Horizontal Transfer of Microbial Toxin Genes to Gall Midge Genomes.

    No full text
    A growing body of evidence has underscored the role of horizontal gene transfer (HGT) in animal evolution. Previously, we discovered the horizontal transfer of the gene encoding the eukaryotic genotoxin cytolethal distending toxin B (cdtB) from the pea aphid Acyrthosiphon pisum secondary endosymbiont (APSE) phages to drosophilid and aphid nuclear genomes. Here, we report cdtB in the nuclear genome of the gall-forming "swede midge" Contarinia nasturtii (Diptera: Cecidomyiidae) via HGT. We searched all available gall midge genome sequences for evidence of APSE-to-insect HGT events and found five toxin genes (aip56, cdtB, lysozyme, rhs, and sltxB) transferred horizontally to cecidomyiid nuclear genomes. Surprisingly, phylogenetic analyses of HGT candidates indicated APSE phages were often not the ancestral donor lineage of the toxin gene to cecidomyiids. We used a phylogenetic signal statistic to test a transfer-by-proximity hypothesis for animal HGT, which suggested that microbe-to-insect HGT was more likely between taxa that share environments than those from different environments. Many of the toxins we found in midge genomes target eukaryotic cells, and catalytic residues important for toxin function are conserved in insect copies. This class of horizontally transferred, eukaryotic cell-targeting genes is potentially important in insect adaptation

    Evolution and genomic basis of the plant-penetrating ovipositor: A key morphological trait in herbivorous Drosophilidae

    No full text
    Herbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. The plant-penetrating ovipositor, however, is one trait that surmounts host plant physical defences and may be evolutionarily labile. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages, including within the Drosophilidae. However, the evolution and genetic basis of this innovation has not been well studied. Here, we focused on the evolution of this trait in Scaptomyza, a genus sister to Hawaiian Drosophila, that contains a herbivorous clade. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved in the Scaptomyza lineage. Through a genome-wide association study, we then dissected the genomic architecture of variation in ovipositor bristle number within S. flava. Top-associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Individual genotyping supported the association at a variant upstream of Gαi, a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to this key morphological trait involved in plant colonization.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Evolution of Olfactory Receptors Tuned to Mustard Oils in Herbivorous Drosophilidae.

    No full text
    The diversity of herbivorous insects is attributed to their propensity to specialize on toxic plants. In an evolutionary twist, toxins betray the identity of their bearers when herbivores coopt them as cues for host-plant finding, but the evolutionary mechanisms underlying this phenomenon are poorly understood. We focused on Scaptomyza flava, an herbivorous drosophilid specialized on isothiocyanate (ITC)-producing (Brassicales) plants, and identified Or67b paralogs that were triplicated as mustard-specific herbivory evolved. Using in vivo heterologous systems for the expression of olfactory receptors, we found that S. flava Or67bs, but not the homologs from microbe-feeding relatives, responded selectively to ITCs, each paralog detecting different ITC subsets. Consistent with this, S. flava was attracted to ITCs, as was Drosophila melanogaster expressing S. flava Or67b3 in the homologous Or67b olfactory circuit. ITCs were likely coopted as olfactory attractants through gene duplication and functional specialization (neofunctionalization and subfunctionalization) in S. flava, a recently derived herbivore
    corecore