1,036 research outputs found

    A novel model to explain dietary factors affecting hypocalcaemia in dairy cattle

    Get PDF
    Most dairy cows exhibit different degrees of hypocalcaemia around calving because the gestational Ca requirements shift to the disproportionately high Ca requirements of lactation. Ca homeostasis is a robust system that effectively adapts to changes in Ca demand or supply. However, these adaptations often are not rapid enough to avoid hypocalcaemia. A delay in the reconfiguration of intestinal Ca absorption and bone resorption is probably the underlying cause of this transient hypocalcaemia. Several dietary factors that affect different aspects of Ca metabolism are known to reduce the incidence of milk fever. The present review describes the interactions between nutrition and Ca homeostasis using observations from cattle and extrapolations from other species and aims to quantitatively model the effects of the nutritional approaches that are used to induce dry cows into an early adaptation of Ca metabolism. The present model suggests that reducing dietary cation–anion difference (DCAD) increases Ca clearance from the blood by dietary induction of systemic acidosis, which results in hypercalciuria due to the loss of function of the renal Ca transient receptor potential vanilloid channel TRPV5. Alternatively, reducing the gastrointestinal availability of Ca by reducing dietary Ca or its nutritional availability will also induce the activation of Ca metabolism to compensate for basal blood Ca clearance. Our model of gastrointestinal Ca availability as well as blood Ca clearance in the transition dairy cow allowed us to conclude that the most common dietary strategies for milk fever prevention may have analogous modes of action that are based on the principle of metabolic adaptation before calving

    Heat Stress and feeding strategies in meat-type chickens

    Get PDF
    Heat stress can induce hyperthermia in poultry. A reduction in heat load can be achieved by increasing the possibilities for dissipation, decreasing the level of heat production or by changing the thermal production pattern within a day. Strategies to reduce the negative effects of heat stress can be based on a specific feeding strategy, such as restricted feeding. Feed that is offered long enough before a hot period can ameliorate the harmful effects of high temperature. Another strategy may be to use choice feeding from different feed ingredients, rich in protein or in energy. With such self-selection, the chicken may adjust its intake of individual components, allowing the bird to optimise the heat load associated with the metabolism of the ingested nutrients. Additional promising strategies involve offering a choice between feeds with a different feed particle size or structure. A large particle size contributes to the development of the gastro-intestinal tract (GIT), especially the gizzard and the caeca. A large gizzard will maximize the grinding process and potentially ease digestion down the GIT, thereby reducing heat production associated with digestive processing. Also wet feeding may be profitable under heat stress conditions as well. Feeding wet diets may facilitate an increased water intake and larger particle sizes can limit water excretion in droppings, resulting in more water being available for evaporation during panting, hence cooling the bird. In conclusion, these feeding strategies may help to reduce heat production peaks, facilitate evaporative activity and/or decreases the heat load, resulting in beneficial effects on performance and health of the bird kept in more tropical areas worldwide

    Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components

    Get PDF
    The weaning transition is characterised by morphological, histological and microbial changes, often leading to weaning-associated disorders. These intestinal changes can partly be ascribed to the lack of luminal nutrition arising from the reduced feed intake common in pigs after weaning. It is increasingly becoming clear that changes in the supply with enteral nutrients may have major impacts on intestinal gene expression. Furthermore, the major dietary constituents, i.e. carbohydrates, fatty acids and amino acids, participate in the regulation of intestinal gene expression. However, nutrients may also escape digestion by mammalian enzymes in the upper gastrointestinal tract. These nutrients can be used by the microflora, resulting in the production of bacterial metabolites, for example, SCFA, which may affect intestinal gene expression indirectly. The present review provides an insight on possible effects of reduced feed intake on intestinal gene expression, as it may occur post-weaning. Detailed knowledge on effects of reduced feed intake on intestinal gene expression may help to understand weaning-associated intestinal dysfunctions and diseases. Examples are given of intestinal genes which may be altered in their expression due to supply with specific nutrients. In that way, gene expression could be modulated by dietary means, thereby acting as a potential therapeutic tool. This could be achieved, for example, by influencing genes coding for digestive or absorptive proteins, thus optimising digestive function and metabolism, but also with regard to immune response, or by influencing proliferative processes, thereby enhancing mucosal repair. This would be of special interest when designing a diet to overcome weaning-associated problem

    Effect of season and farming system on the quantity and nutritional quality of scavengeable feed resources and performance of village poultry in central Tanzania

    Get PDF
    2 x 2 factorial study was conducted to assess the effect of season and farming system on the quantity and nutritional quality of scavengeable feed resources and the performance of village poultry in central Tanzania. A total of 648 scavenging chickens purchased from farmers were slaughtered and the crop contents were subjected to physical and chemical analysis. The mean fresh weights of the crop contents were higher (

    Efficiency of fat deposition from nonstarch polysaccharides, starch and unsaturated fat in pig

    Get PDF
    The aim was to evaluate under protein-limiting conditions the effect of different supplemental energy sources: fermentable NSP (fNSP), digestible starch (dStarch) and digestible unsaturated fat (dUFA), on marginal efficiency of fat deposition and distribution. A further aim was to determine whether the extra fat deposition from different energy sources, and its distribution in the body, depends on feeding level. A total of fifty-eight individually housed pigs (48 (sd 4) kg) were used in a 3 x 2 factorial design study, with three energy sources (0.2 MJ digestible energy (DE)/kg0.75 per d of fNSP, dStarch and dUFA added to a control diet) at two feeding levels. Ten pigs were slaughtered at 48 (sd 4) kg body weight and treatment pigs at 106 (sd 3) kg body weight. Bodies were dissected and the chemical composition of each body fraction was determined. The effect of energy sources on fat and protein deposition was expressed relative to the control treatments within both energy intake levels based on a total of thirty-two observations in six treatments, and these marginal differences were subsequently treated as dependent variables. Results showed that preferential deposition of the supplemental energy intake in various fat depots did not depend on the energy source, and the extra fat deposition was similar at each feeding level. The marginal energetic transformation (energy retention; ER) of fNSP, dStarch and dUFA for fat retention (ERfat:DE) was 44, 52 and 49 % (P>0.05), respectively. Feeding level affected fat distribution, but source of energy did not change the relative partitioning of fat deposition. The present results do not support values of energetic efficiencies currently used in net energy-based system

    Intestinal barrier function and absorption in pigs after waeaning: a review

    Get PDF
    Under commercial conditions, weaning of piglets is associated with social, environmental and dietary stress. Consequently, small-intestinal barrier and absorptive functions deteriorate within a short time after weaning. Most studies that have assessed small-intestinal permeability in pigs after weaning used either Ussing chambers or orally administered marker probes. Paracellular barrier function and active absorption decrease when pigs are weaned at 3 weeks of age or earlier. However, when weaned at 4 weeks of age or later, the barrier function is less affected, and active absorption is not affected or is increased. Weaning stress is a critical factor in relation to the compromised paracellular barrier function after weaning. Adequate feed intake levels after weaning prevent the loss of the intestinal barrier function. Transcellular transport of macromolecules and passive transcellular absorption decrease after weaning. This may reflect a natural intestinal maturation process that is enhanced by the weaning process and prevents the pig from an antigen overload. It seems that passive and active absorption after weaning adapt accurately to the new environment when pigs are weaned after 3 weeks of age. However, when weaned at 3 weeks of age or earlier, the decrease in active absorption indicates that pigs are unable to sufficiently adapt to the new environment. To improve weaning strategies, future studies should distinguish whether the effect of feed intake on barrier function can be directed to a lack of a specific nutrient, i.e. energy or protein

    Nutritional and health status of woolly monkeys

    Get PDF
    Woolly monkeys (Lagothrix lagotricha and L. flavicauda) are threatened species in the wild and in captivity. Numerous zoological institutions have historically kept Lagothrix lagotricha spp., but only a few of them have succeeded in breeding populations. Therefore the majority of institutions that formerly kept Lagothrix lagotricha are no longer able or willing to do so. Captive populations of the species have frequent health problems, most significantly hypertension and related disorders. Researchers have conducted free-ranging dietary and behavior studies with respect to woolly monkeys, but have established no concrete link between diet or nutrients and captive health problems. The available literature we discuss indicates that researchers need to examine the link further. In addition, it is critical to the survival of the primates to be able to keep breeding populations in captivity owing to increasing natural pressures such as deforestation and hunting. Therefore, better understanding of the captive and free-ranging behavior and health parameters of the species is vital to ensure their survival and to maintain forest health and diversity. Researchers need to conduct large-scale research studies comparing the health and complete diet of individuals in the wild and captivity to resolve health problems facing the species in captivity

    Laboratory investigation of daily food intake and gut evacuation in larvae of African catfish Clarias gariepinus under different feeding conditions

    Get PDF
    Abstract Temporary accumulation of ascorbic acid 2-sulfate (AAS) was measured to estimate food intake and gut evacuation in larvae of African catfish. Fish larvae were fed decapsulated cysts of Artemia containing AAS. In a first experiment it was found that no biosynthesis of AAS occurs in the larvae of this species. In a second experiment, the gut contents of the fish larvae fed were calculated as they changed during development. In a third experiment, the gut evacuation rate of fish larvae was determined during continuous and discontinuous feeding regimes in the first five days after the start of exogenous feeding. Food consumption by catfish larvae increased from 46.5% of their body dry weight (BDW) on day 1 after the start of exogenous feeding to 53.8% BDW on day 3. Thereafter, food consumption decreased to 27.8% BDW on day 5. A similar pattern was observed for gut evacuation, which increased during the first days of exogenous feeding and decreased as fish growth continued. The rate of gut evacuation in a continuous feeding regime was significantly higher (P <0.05) than that under discontinuous feeding. On day 1 post-hatch and 7 h after first food ingestion the fish larvae evacuated 87% of the food in continuous feeding compared with 43% under discontinuous feeding. It was found that gut emptying differs during larval development. Under continuous feeding, on days 1 and 3 post-hatch and 11 h after the first meal 90% of the food was evacuated compared with 71% evacuated on day 5. The advantages and limitations of the AAS method for estimation of food consumption by fish larvae are discussed

    Tolerance and safety evaluation of N, N-dimethylglycine, a naturally occurring organic compound, as a feed additive in broiler diets

    Get PDF
    N, N-dimethylglycine (DMG) is a tertiary amino acid that naturally occurs as an intermediate metabolite in choline-to-glycine metabolism. The objective of the present trial was to evaluate tolerance, safety and bioaccumulation of dietary DMG in broilers when supplemented at 1 g and 10 g Na-DMG/kg. A feeding trial was conducted using 480 1-d-old broiler chicks that were randomly allocated to twenty-four pens and fed one of three test diets added with 0, 1 or 10 g Na-DMG/kg during a 39 d growth period. Production performance was recorded to assess tolerance and efficacy of the supplement. At the end of the trial, toxicity was evaluated by means of haematology, plasma biochemistry and histopathology of liver, kidney and heart (n 12), whereas bioaccumulation was assessed on breast meat, liver, blood, kidney and adipose tissue (n 8). Carcass traits were similar between the control and 1 g Na-DMG/kg feed groups (P>0·05), but the feed:gain ratio was significantly improved at 1 g Na-DMG/kg feed compared with the control or the 10-fold dose (P = 0·008). Histological examinations showed no pathological effects and results of haematology and plasma biochemistry revealed similar values between the test groups (P>0·05). Bioaccumulation occurred at the 10-fold dose, but the resulting DMG content in breast meat was comparable with, for instance, wheat bran and much lower than uncooked spinach. In conclusion, DMG at 1 g Na-DMG/kg improved the feed:gain ratio in broilers without DMG being accumulated in consumer parts. Furthermore, dietary supplementation with DMG up to 10 g Na-DMG/kg did not induce toxicity or impaired performance in broilers

    Effects of exercise on l-carnitine and lipid metabolism in African catfish (Clarias gariepinus) fed different dietary l-carnitine and lipid levels

    Get PDF
    African catfish (Clarias gariepinus) were fed four isonitrogenous diets (34 % crude protein), each containing one of two lipid (100 or 180 g/kg) and two l-carnitine (15 or 1000 mg/kg) levels. After 81 d of feeding, thirty-two fish (body weight 32 g) from each dietary group were randomly selected, sixteen fish were induced to a 3-h swim (speed of 1.5 body length (BL)/s), while the other sixteen fish were kept under resting condition. Fish fed 1000 mg l-carnitine accumulated 3.5 and 5 times more l-carnitine in plasma and muscle, respectively, than fish fed the 15 mg l-carnitine. Muscle l-carnitine content was significantly lower in exercised fish than in rested fish. High dietary lipid level (fish oil) led to an increase in muscle n-3 PUFA content and a decrease in SFA and MUFA content. In liver, the increase in dietary lipid level resulted in an increased levels of both n-6 and n-3 PUFA. l-carnitine supplementation significantly decreased n-3 PUFA content. Exercise decreased n-3 PUFA in both muscle and liver. Plasma lactate and lactate dehydrogenase, normally associated with increased glycolytic processes, were positively correlated with exercise and inversely correlated with dietary l-carnitine level. l-carnitine supplementation reduced significantly the RQ from 0.72 to 0.63, and an interaction between dietary l-carnitine and lipid was observed (P <0.03). Our results indicate that an increase in fatty acids (FA) intake may promote FA oxidation, and both carnitine and exercise might influence the regulation of FA oxidation selectivity
    corecore