4 research outputs found

    Effect of transition metal dopants on initial mass transport in the dehydrogenation of NaAlH4: Density functional theory study

    No full text
    Sodium alanate (NaAlH4) is a prototype system for storage of hydrogen in chemical form. However, a key experimental finding, that early transition metals (TMs) like Ti, Zr, and Sc are good catalysts for hydrogen release (and reuptake) whereas traditional hydrogenation catalysts like Pd and Pt are poor catalysts for NaAlH4, has so far received little attention. We performed density functional theory (DFT) calculations at the PW91 generalized gradient approximation level on Ti, Zr, Sc, Pd, and Pt interacting with the (001) surface of nanocrystalline NaAlH4, employing a cluster model of the complex metal hydride to study the initial mass transport in the dehydrogenation process. A key difference between Ti, Zr, and Sc on one hand and Pd and Pt on the other is that exchange of the early TM atoms with a surface Na ion, whereby Na is pushed on to the surface, is energetically preferred over surface absorption in an interstitial site, as found for Pd and Pt. These theoretical findings are consistent with a crucial feature of the TM catalyst being that it can be transported with the reaction boundary as it moves into the bulk, enabling the starting material to react away while the catalyst eats its way into the bulk and affecting a phase separation between a Na-rich and an Al-rich phase. Additional periodic DFT/PW91 calculations in which NaAlH 4 is modeled as a slab to model dehydrogenation of larger NaAlH 4 particles and which only consider adsorption and absorption of Ti suggest that Ti prefers to absorb interstitially but with only a small energy preference over a geometry in which Ti has exchanged with Na. Additional nudged elastic band calculations based on periodic DFT show only a small barrier (0.02 eV) for exchange of Ti with a surface Na atom. The mechanism inferred from the cluster calculations is therefore consistent with the slab calculations and may well be important. © 2012 American Chemical Society.The work presented here has been supported by a grant from the Dutch research council NWO under the ACTS Hydrogen programme and by a grant of computer time by the Dutch National Computing facilities Foundation (NCF).Peer Reviewe

    Effect of Transition Metal Dopants on Initial Mass Transport in the Dehydrogenation of NaAlH<sub>4</sub>: Density Functional Theory Study

    No full text
    Sodium alanate (NaAlH<sub>4</sub>) is a prototype system for storage of hydrogen in chemical form. However, a key experimental finding, that early transition metals (TMs) like Ti, Zr, and Sc are good catalysts for hydrogen release (and reuptake) whereas traditional hydrogenation catalysts like Pd and Pt are poor catalysts for NaAlH<sub>4</sub>, has so far received little attention. We performed density functional theory (DFT) calculations at the PW91 generalized gradient approximation level on Ti, Zr, Sc, Pd, and Pt interacting with the (001) surface of nanocrystalline NaAlH<sub>4</sub>, employing a cluster model of the complex metal hydride to study the initial mass transport in the dehydrogenation process. A key difference between Ti, Zr, and Sc on one hand and Pd and Pt on the other is that exchange of the early TM atoms with a surface Na ion, whereby Na is pushed on to the surface, is energetically preferred over surface absorption in an interstitial site, as found for Pd and Pt. These theoretical findings are consistent with a crucial feature of the TM catalyst being that it can be transported with the reaction boundary as it moves into the bulk, enabling the starting material to react away while the catalyst eats its way into the bulk and affecting a phase separation between a Na-rich and an Al-rich phase. Additional periodic DFT/PW91 calculations in which NaAlH<sub>4</sub> is modeled as a slab to model dehydrogenation of larger NaAlH<sub>4</sub> particles and which only consider adsorption and absorption of Ti suggest that Ti prefers to absorb interstitially but with only a small energy preference over a geometry in which Ti has exchanged with Na. Additional nudged elastic band calculations based on periodic DFT show only a small barrier (0.02 eV) for exchange of Ti with a surface Na atom. The mechanism inferred from the cluster calculations is therefore consistent with the slab calculations and may well be important

    Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level

    Get PDF
    Low-density lipoprotein (LDL) plays a critical role in cholesterol transport and is closely linked to the progression of several diseases. This motivates the development of methods to study LDL behavior from the microscopic to whole-body level. We have developed an approach to efficiently load LDL with a range of diagnostically active nanocrystals or hydrophobic agents. We performed focused experiments on LDL labeled with gold nanocrystals (Au-LDL). The labeling procedure had minimal effect on LDL size, morphology, or composition. Biological function was found to be maintained from both in vitro and in vivo experiments. Tumor-bearing mice were injected intravenously with LDL, DiR-LDL, Au-LDL, or a gold-loaded nanoemulsion. LDL accumulation in the tumors was detected with whole-body imaging methods, such as computed tomography (CT), spectral CT, and fluorescence imaging. Cellular localization was studied with transmission electron microscopy and fluorescence techniques. This LDL labeling procedure should permit the study of lipoprotein biointeractions in unprecedented detai
    corecore