15 research outputs found

    Column Bioleaching of Fluoride-Containing Secondary Copper Sulfide Ores: Experiments With Sulfobacillus thermosulfidooxidans

    Get PDF
    Bioleaching is a mature technology, which is widely employed commercially in the leaching of primary sources of metals (ores, concentrates, and mine residues). The current work discussed the effects of aluminum sulfate additions to the growth medium, PLS recirculation and bleeding on the column bioleaching of secondary copper sulfide ores with a significant content of fluoride-containing minerals. Fluoride is toxic to bacteria at the pH of bioleaching but its toxicity may be overcome in the presence of soluble aluminum and ferric iron. Therefore, experiments were carried out in 10 × 100 cm height aerated columns, loaded with 10 kg of crushed and agglomerated copper ore and inoculated with Sulfobacillus thermosulfidooxidans. Initially, fluoride concentrations of up to 2.5 g/L in the pregnant leach solution were observed due to the fast dissolution of fluoride-bearing minerals. Aluminum was added to the leaching solution to reduce the Al/F ratio so that the concentration of HF (the main toxic species) was decreased, but while the total fluoride concentration was higher than that of aluminum, the bacterial population as low. Therefore, the current work emphasizes that it is possible to set up conditions to enable bioleaching even at high fluoride concentrations. Following this approach, copper extractions above 90% were achieved for a H2SO4 consumption ranging from 128.8 to 206.1 Kg/ton

    Hydrogels of cellulose acetate crosslinked with pyromellitic dianhydride: part I: synthesis and swelling kinetics

    Full text link
    This work describes the synthesis of hydrogels of cellulose acetate (AC) crosslinked with 1,2,4,5-benzenotetracarboxylic dianhydride (PMDA). The crosslinking reaction was monitored by FTIR. Analysis of aromatic fragments from the alkaline hydrolysis of the gels by UV spectroscopy indicated that an increase in the stoichiometric ratio of dianhydride resulted in higher degrees of crosslinking. The non-porous nature of the gels was confirmed by analysis of nitrogen adsorption. Water absorption isotherms showed that as the temperature and degree of crosslinking increased, the percentage of water absorbed at equilibrium (%Seq) also increased. The hydrogels presented second order swelling kinetics

    Comparison of UASB and fluidized-bed reactors for sulfate reduction.

    No full text
    Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB) do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i) an upflow anaerobic sludge blanket (UASB) reactor and (ii) a fluidized bed reactor (FBR). Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction), whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1) or glycerol (0.178±0.010 g.gSSV-1.d-1). Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1) than that produced with lactate (2500 mg.L-1) at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value

    The effects of fluoride and aluminum ions on ferrous-iron oxidation and copper sulfide bioleaching with Sulfobacillus thermosulfidooxidans.

    No full text
    Microorganisms that grow at high temperatures can improve Fe(II) bio-oxidation and thereby its technological applications, such as bioleaching and H2S removal. Conversely, elements present in industrial growth media, such as fluoride, can inhibit bacterial growth and iron bio-oxidation. In this work, the influence of fluoride on the kinetics of ferrous-iron bio-oxidation with Sulfobacillus thermosulfidooxidans was investigated. The effects of fluoride concentrations (0–0.5 mmol L−1) on both iron oxidation and bacterial growth rates were assessed. In addition, the effect of the addition of aluminum, which was intended to complex free fluoride and reduce the concentration of HF through the formation of aluminum–fluoride complexes, was also investigated. The results show that 0.5 mmol L−1 NaF completely inhibited bacterial growth within 60 h. Nevertheless, fluoride toxicity to S. thermosulfidooxidans was minimized by control of the aluminum–fluoride ratio in the system because, at a 2:1 aluminum–fluoride molar ratio, bacterial growth was similar to that observed in the absence of fluoride ions. Despite a slower bacterial growth rate, fluoride concentrations less than the inhibitory concentration increased the Fe(II) oxidation rate. Successful copper bioleaching (80–100%) from fluoride-containing sulfide ores (1% total fluoride) was demonstrated in the presence of aluminum

    High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil

    Get PDF
    Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn), is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil). Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II), up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II) oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations
    corecore