10 research outputs found

    Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor

    No full text
    The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2\u27 substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high enthalpy driven affinity of TMC114 for HIV-1 protease. In vitro selection of mutants resistant to TMC114 starting from wild-type virus proved to be extremely difficult; this was not the case for other close analogues. Therefore, the extra H-bond to the backbone in the P2 pocket cannot be the only explanation for the interesting antiviral profile of TMC114. Absorption studies in animals indicated that TMC114 has pharmacokinetic properties comparable to currently approved HIV-1 protease inhibitors

    Design of HIV-1 protease inhibitors active on multidrug-resistant virus

    No full text
    On the basis of structural data gathered during our ongoing HIV-1 protease inhibitors program, from which our clinical candidate TMC114 9 was selected, we have discovered new series of fused heteroaromatic sulfonamides. The further extension into the P2\u27 region was aimed at identifying new classes of compounds with an improved broad spectrum activity and acceptable pharmacokinetic properties. Several of these compounds display an exceptional broad spectrum activity against a panel of highly cross-resistant mutants. Certain members of these series exhibit favorable pharmacokinetic profiles in rat and dog. Crystal structures and molecular modeling were used to rationalize the broad spectrum profile resulting from the extension into the P2\u27 pocket of the HIV-1 protease

    Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance.

    No full text
    Contains fulltext : 51057.pdf (publisher's version ) (Closed access)Here we report the presence of hyperphagia, obesity and insulin resistance in knockout mice deficient in IL-18 or IL-18 receptor, and in mice transgenic for expression of IL-18 binding protein. Obesity of Il18-/- mice resulted from accumulation of fat tissue based on increased food intake. Il18-/- mice also had hyperinsulinemia, consistent with insulin resistance and hyperglycemia. Insulin resistance was secondary to obesity induced by increased food intake and occurred at the liver level as well as at the muscle and fat-tissue level. The molecular mechanisms responsible for the hepatic insulin resistance in the Il18-/- mice involved an enhanced expression of genes associated with gluconeogenesis in the liver of Il18-/- mice, resulting from defective phosphorylation of STAT3. Recombinant IL-18 (rIL-18) administered intracerebrally inhibited food intake. In addition, rIL-18 reversed hyperglycemia in Il18-/- mice through activation of STAT3 phosphorylation. These findings indicate a new role of IL-18 in the homeostasis of energy intake and insulin sensitivity
    corecore