424 research outputs found

    Hepatitis E virus RNA in commercially available porcine livers in The Netherlands

    Get PDF
    Hepatitis E virus (HEV) infections caused by genotype 3 are increasingly observed in industrialized countries, without a distinct source. High similarity between human and swine strains of HEV strongly suggest possible zoonotic transmission. It was reported previously that in 55% of Dutch pig farms HEV-excreting fattening pigs were present. In the current study, presence of HEV RNA in commercially available porcine livers was shown. We examined 62 commercially available porcine livers for HEV contamination. Before examination of livers, the most sensitive combination of tissue disruption and RNA-extraction was chosen from four disruption and seven RNA-extraction methods. Four of 62 livers were shown to be positive for HEV RNA by RT-PCR and Southern blot hybridization, and three sequences were obtained. Phylogenetic analysis showed clustering of the sequences with previously published Dutch HEV genotype 3 sequences from humans and swine. To study infectivity of possible virus, three pigs were intravenously inoculated with suspensions from commercially available HEV positive livers. Two other pigs served as high-dose or low-dose controls. The low-dose control received a comparable viral count as animals receiving inocula from commercially available livers, the high dose control received a viral count that was known to generate infection. Faecal shedding of HEV was observed in the high-dose control, indicating that the control virus was infectious. No faecal shedding of HEV was observed for the low-dose control and the three pigs that were administered the commercially available livers extracts. In conclusion, HEV RNA was found in commercially available porcine livers. inoculation of susceptible pigs with extracts from HEV-positive livers did not lead to infection, but this may be a dose-dependent effect. The risk for consumers should be investigated further

    Detection of noroviruses in foods: a study on virus extraction procedures in foods implicated in outbreaks of human gastroenteritis.

    Get PDF
    Disease outbreaks in which foods are epidemiologically implicated as the common source are frequently reported. Noroviruses and enteric hepatitis A viruses are among the most prevalent causative agents of foodborne diseases. However, the detection of these viruses in foods other than shellfish is often time-consuming and unsuccessful. In this study, three virus concentration methods were compared: polyethylene glycol (PEG) plus NaCl, ultracentrifugation, and ultrafiltration. Two RNA extraction methods, TRIzol and RNeasy Mini Kit (Qiagen), were compared for detection of viruses in whipped cream and lettuce (as representatives of the dairy and vegetable-fruit food groups, respectively). A seeding experiment with canine calicivirus was conducted to determine the efficiency of each virus extraction procedure. The PEG-NaCl-TRIzol method was most efficient for the detection of viruses in whipped cream and the ultracentrifugation-RNeasy-Mini Kit procedure was best for detection on lettuce. Based on the seeding experiments, food items implicated in norovirus-associated gastroenteritis outbreaks were subjected to the optimal procedure for a specific composition and matrix. No noroviruses were detected in the implicated food items, possibly because the concentration of virus on the food item was too low or because of the presence of inhibitory factors. For each food group, a specific procedure is optimal. Inhibitory factors should be controlled in these procedures because they influence virus detection in food

    Development of a dynamic myocardial perfusion phantom model for tracer kinetic measurements

    Get PDF
    BACKGROUND: Absolute myocardial perfusion imaging (MPI) is beneficial in the diagnosis and prognosis of patients with suspected or known coronary artery disease. However, validation and standardization of perfusion estimates across centers is needed to ensure safe and adequate integration into the clinical workflow. Physical myocardial perfusion models can contribute to this clinical need as these can provide ground-truth validation of perfusion estimates in a simplified, though controlled setup. This work presents the design and realization of such a myocardial perfusion phantom and highlights initial performance testing of the overall phantom setup using dynamic single photon emission computed tomography. RESULTS: Due to anatomical and (patho-)physiological representation in the 3D printed myocardial perfusion phantom, we were able to acquire 22 dynamic MPI datasets in which 99mTc-labelled tracer kinetics was measured and analyzed using clinical MPI software. After phantom setup optimization, time activity curve analysis was executed for measurements with normal myocardial perfusion settings (1.5 mL/g/min) and with settings containing a regional or global perfusion deficit (0.8 mL/g/min). In these measurements, a specific amount of activated carbon was used to adsorb radiotracer in the simulated myocardial tissue. Such mimicking of myocardial tracer uptake and retention over time satisfactorily matched patient tracer kinetics. For normal perfusion levels, the absolute mean error between computed myocardial blood flow and ground-truth flow settings ranged between 0.1 and 0.4 mL/g/min. CONCLUSION: The presented myocardial perfusion phantom is a first step toward ground-truth validation of multimodal, absolute MPI applications in the clinical setting. Its dedicated and 3D printed design enables tracer kinetic measurement, including time activity curve and potentially compartmental myocardial blood flow analysis

    Hepatitis E virus sequences in swine related to sequences in humans, The Netherlands.

    Get PDF
    Hepatitis E virus (HEV), a major cause of viral hepatitis in much of the developing world, has recently been detected in swine in North America and Asia, raising concern about potential for zoonotic transmission. To investigate if HEV is commonly present in swine in the Netherlands, pooled stool samples from 115 swine farms and nine individual pigs with diarrhea were assayed by reverse transcription-polymerase chain reaction (RT-PCR) amplification. HEV RNA was detected by RT-PCR and hybridization in 25 (22%) of the pooled specimens, but in none of the individual samples. RT-PCR amplification products of open reading frames 1 and 2 were sequenced, and the results were compared with published sequences of HEV genotypes from humans and swine. HEV strains from swine in the Netherlands were clustered in at least two groups, together with European and American isolates from swine and humans. Our data show that HEV in swine in the Netherlands are genetically closely related to HEV isolates from humans. Although zoonotic transmission has not been proven, these findings suggest that swine may be reservoir hosts of HEV

    Development of a dedicated 3D printed myocardial perfusion phantom:proof-of-concept in dynamic SPECT

    Get PDF
    We aim to facilitate phantom-based (ground truth) evaluation of dynamic, quantitative myocardial perfusion imaging (MPI) applications. Current MPI phantoms are static representations or lack clinical hard- and software evaluation capabilities. This proof-of-concept study demonstrates the design, realisation and testing of a dedicated cardiac flow phantom. The 3D printed phantom mimics flow through a left ventricular cavity (LVC) and three myocardial segments. In the accompanying fluid circuit, tap water is pumped through the LVC and thereafter partially directed to the segments using adjustable resistances. Regulation hereof mimics perfusion deficit, whereby flow sensors serve as reference standard. Seven phantom measurements were performed while varying injected activity of 99mTc-tetrofosmin (330–550 MBq), cardiac output (1.5–3.0 L/min) and myocardial segmental flows (50–150 mL/min). Image data from dynamic single photon emission computed tomography was analysed with clinical software. Derived time activity curves were reproducible, showing logical trends regarding selected input variables. A promising correlation was found between software computed myocardial flows and its reference (ρ= − 0.98; p = 0.003). This proof-of-concept paper demonstrates we have successfully measured first-pass LV flow and myocardial perfusion in SPECT-MPI using a novel, dedicated, myocardial perfusion phantom. Graphical abstract: This proof-of-concept study focuses on the development of a novel, dedicated myocardial perfusion phantom, ultimately aiming to contribute to the evaluation of quantitative myocardial perfusion imaging applications. [Figure not available: see fulltext.

    The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus

    Get PDF
    Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus)
    corecore