241 research outputs found

    Fertilisation with compost mitigates salt stress in tomato by affecting plant metabolomics and nutritional profiles

    Get PDF
    Background: Salinity is one of the major threats for crop growth and yield and its rate of expansion is expected to increase. We conducted a pot experiment to evaluate and compare the effect of a green compost addition and mineral fertilisation, on growth, nutrition and metabolites of tomato plants, exposed to increasing doses of NaCl. Results: Although the development of stressed plants was lower than the corresponding controls, compost-treated plants performed better than mineral-amended plants watered with the same amount of salt. The different plant growth was related to an increased nutritional status. Namely, compost-treated plants showed a larger content of macro- and micronutrients, and a greater accumulation of osmoprotectants, such as soluble sugars and amino acids. Moreover, compost-treated plants showed a larger content of metabolites involved in modulating the response to salt stress, such as molecules related to energy transfer in plants and precursors of Reactive Oxygen Species scavenging compounds. Overall, the better performance of compost-added plants may be attributed to a greater availability of the organic forms of nutrients and to the positive bioactivity of compost-derived humic substances. Conclusions: Compost application efficiently mitigated salt stress in tomato plants in respect to mineral fertilisation. This alleviating role was associated to the induction of a more efficient metabolic response that increased accumulation of metabolites involved in modulating the salinity stress. Therefore, fertilising with composted agricultural residue may represent a convenient alternative to mineral fertilisers to grow tomato plants in the presence of salt stres

    Proteomic analysis of apricot fruit during ripening

    Get PDF
    Ripening of climacteric fruits involves a complex network of biochemical and metabolic changes that make them palatable and rich in nutritional and health-beneficial compounds. Since fruit maturation has a profound impact on human nutrition, it has been recently the object of increasing research activity by holistic approaches, especially on model species. Here we report on the original proteomic characterization of ripening in apricot, a widely cultivated species of temperate zones appreciated for its taste and aromas, whose cultivation is yet hampered by specific limitations. Fruits of Prunus armeniaca cv. Vesuviana were harvested at three ripening stages and proteins extracted and resolved by 1D and 2D electrophoresis. Whole lanes from 1D gels were subjected to shot-gun analysis that identified 245 gene products, showing preliminary qualitative differences between maturation stages. In parallel, differential analysis of 2D proteomic maps highlighted 106 spots as differentially represented among variably ripen fruits. Most of these were further identified by means of MALDI-TOF-PMF and nanoLC–ESI–LIT–MS/MS as enzymes involved in main biochemical processes influencing metabolic/structural changes occurring during maturation, i.e. organic acids, carbohydrates and energy metabolism, ethylene biosynthesis, cell wall restructuring and stress response, or as protein species linkable to peculiar fruit organoleptic characteristics. In addition to originally present preliminary information on the main biochemical changes that characterize apricot ripening, this study also provides indications for future marker-assisted selection breeding programs aimed to ameliorate fruit quality

    Implementation and Characterization of Vibrotactile Interfaces

    Get PDF
    While a standard approach is more or less established for rendering basic vibratory cues in consumer electronics, the implementation of advanced vibrotactile feedback still requires designers and engineers to solve a number of technical issues. Several off-the-shelf vibration actuators are currently available, having different characteristics and limitations that should be considered in the design process. We suggest an iterative approach to design in which vibrotactile interfaces are validated by testing their accuracy in rendering vibratory cues and in measuring input gestures. Several examples of prototype interfaces yielding audio-haptic feedback are described, ranging from open-ended devices to musical interfaces, addressing their design and the characterization of their vibratory output

    Perception of Vibrotactile Cues in Musical Performance

    Get PDF
    We suggest that studies on active touch psychophysics are needed to inform the design of haptic musical interfaces and better understand the relevance of haptic cues in musical performance. Following a review of the previous literature on vibrotactile perception in musical performance, two recent experiments are reported. The first experiment investigated how active finger-pressing forces affect vibration perception, finding significant effects of vibration type and force level on perceptual thresholds. Moreover, the measured thresholds were considerably lower than those reported in the literature, possibly due to the concurrent effect of large (unconstrained) finger contact areas, active pressing forces, and long-duration stimuli. The second experiment assessed the validity of these findings in a real musical context by studying the detection of vibrotactile cues at the keyboard of a grand and an upright piano. Sensitivity to key vibrations in fact not only was highest at the lower octaves and gradually decreased toward higher pitches; it was also significant for stimuli having spectral peaks of acceleration similar to those of the first experiment, i.e., below the standard sensitivity thresholds measured for sinusoidal vibrations under passive touch conditions

    Further Delineation of Duplications of ARX Locus Detected in Male Patients with Varying Degrees of Intellectual Disability

    Get PDF
    The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, pae-diatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telen-cephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that—depending on the involvement of tissue-specific enhancers—the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance

    Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a myocardial disease characterized by left ventricular hypertrophy not solely explained by abnormal loading conditions. Despite its rare prevalence in pediatric age, HCM carries a relevant risk of mortality and morbidity in both infants and children. Pediatric HCM is a large heterogeneous group of disorders. Other than mutations in sarcomeric genes, which represent the most important cause of HCM in adults, childhood HCM includes a high prevalence of non-sarcomeric causes, including inherited errors of metabolism (i.e., glycogen storage diseases, lysosomal storage diseases, and fatty acid oxidation disorders), malformation syndromes, neuromuscular diseases, and mitochondrial disease, which globally represent up to 35% of children with HCM. The age of presentation and the underlying etiology significantly impact the prognosis of children with HCM. Moreover, in recent years, different targeted approaches for non-sarcomeric etiologies of HCM have emerged. Therefore, the etiological diagnosis is a fundamental step in designing specific management and therapy in these subjects. The present review aims to provide an overview of the non-sarcomeric causes of HCM in children, focusing on the pathophysiology, clinical features, diagnosis, and treatment of these rare disorders

    Use of Natural Agents and Agrifood Wastes for the Treatment of Skin Photoaging

    Get PDF
    Photoaging is the premature aging of the skin caused by repeated exposure to ultraviolet (UV) rays. The harmful effects of UV rays—from the sun or from artificial sources—alter normal skin structures and cause visible damage, especially in the most exposed areas. Fighting premature aging is one of the most important challenges of the medical landscape. Additionally, consumers are looking for care products that offer multiple benefits with reduced environmental and economic impact. The growing requests for bioactive compounds from aromatic plants for pharmaceutical and cosmetic applications have to find new sustainable methods to increase the effectiveness of new active formulations derived from eco-compatible technologies. The principle of sustainable practices and the circular economy favor the use of bioactive components derived from recycled biomass. The guidelines of the European Commission support the reuse of various types of organic biomass and organic waste, thus transforming waste management problems into economic opportunities. This review aims to elucidate the main mechanisms of photoaging and how these can be managed using natural renewable sources and specific bioactive derivatives, such as humic extracts from recycled organic biomass, as potential new actors in modern medicine

    Auditory and tactile gap discrimination by observers with normal and impaired hearing

    Get PDF
    Temporal processing ability for the senses of hearing and touch was examined through the measurement of gap-duration discrimination thresholds (GDDTs) employing the same low-frequency sinusoidal stimuli in both modalities. GDDTs were measured in three groups of observers (normal-hearing, hearing-impaired, and normal-hearing with simulated hearing loss) covering an age range of 21–69 yr. GDDTs for a baseline gap of 6 ms were measured for four different combinations of 100-ms leading and trailing markers (250–250, 250–400, 400–250, and 400–400 Hz). Auditory measurements were obtained for monaural presentation over headphones and tactile measurements were obtained using sinusoidal vibrations presented to the left middle finger. The auditory GDDTs of the hearing-impaired listeners, which were larger than those of the normal-hearing observers, were well-reproduced in the listeners with simulated loss. The magnitude of the GDDT was generally independent of modality and showed effects of age in both modalities. The use of different-frequency compared to same-frequency markers led to a greater deterioration in auditory GDDTs compared to tactile GDDTs and may reflect differences in bandwidth properties between the two sensory systems.National Institute on Deafness and Other Communication Disorders (U.S.) (Grant R01 DC000117
    • …
    corecore