11 research outputs found

    Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection

    Get PDF
    To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies

    Respiratory Immunization With a Whole Cell Inactivated Vaccine Induces Functional Mucosal Immunoglobulins Against Tuberculosis in Mice and Non-human Primates

    Get PDF
    Vaccination through the natural route of infection represents an attractive immunization strategy in vaccinology. In the case of tuberculosis, vaccine delivery by the respiratory route has regained interest in recent years, showing efficacy in different animal models. In this context, respiratory vaccination triggers lung immunological mechanisms which are omitted when vaccines are administered by parenteral route. However, contribution of mucosal antibodies to vaccine- induced protection has been poorly studied. In the present study, we evaluated in mice and non-human primates (NHP) a novel whole cell inactivated vaccine (MTBVAC HK), by mucosal administration. MTBVAC HK given by intranasal route to BCG-primed mice substantially improved the protective efficacy conferred by subcutaneous BCG only. Interestingly, this improved protection was absent in mice lacking polymeric Ig receptor (pIgR), suggesting a crucial role of mucosal secretory immunoglobulins in protective immunity. Our study in NHP confirmed the ability of MTBVAC HK to trigger mucosal immunoglobulins. Importantly, in vitro assays demonstrated the functionality of these immunoglobulins to induce M. tuberculosis opsonization in the presence of human macrophages. Altogether, our results suggest that mucosal immunoglobulins can be induced by vaccination to improve protection against tuberculosis and therefore, they represent a promising target for next generation tuberculosis vaccines

    Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccination compared to standard intradermal vaccination

    Get PDF
    Vierboom et al. demonstrate the induction of trained immunity in blood and bone marrow monocytes after vaccination with live attenuated TB vaccines in nonhuman primates. Mucosal respiratory delivery of BCG or MTBVAC induces trained immunity more efficiently compared to standard intradermal vaccination

    Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections

    Get PDF
    The persistent increase of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) infections negatively impacts Tuberculosis treatment outcomes. Host-directed therapies (HDT) pose an complementing strategy, particularly since Mtb is highly successful in evading host-defense by manipulating host-signaling pathways. Here, we screened a library containing autophagy-modulating compounds for their ability to inhibit intracellular Mtb-bacteria. Several active compounds were identified, including two drugs of the diphenylbutylpiperidine-class, Fluspirilene and Pimozide, commonly used as antipsychotics. Both molecules inhibited intracellular Mtb in pro- as well as anti-inflammatory primary human macrophages in a host-directed manner and synergized with conventional anti-bacterials. Importantly, these inhibitory effects extended to MDR-Mtb strains and the unrelated intracellular pathogen, Salmonella enterica serovar Typhimurium (Stm). Mechanistically Fluspirilene and Pimozide were shown to regulate autophagy and alter the lysosomal response, partly correlating with increased bacterial localization to autophago(lyso)somes. Pimozide's and Fluspirilene's efficacy was inhibited by antioxidants, suggesting involvement of the oxidative-stress response in Mtb growth control. Furthermore, Fluspirilene and especially Pimozide counteracted Mtb-induced STAT5 phosphorylation, thereby reducing Mtb phagosome-localized CISH that promotes phagosomal acidification. In conclusion, two approved antipsychotic drugs, Pimozide and Fluspirilene, constitute highly promising and rapidly translatable candidates for HDT against Mtb and Stm and act by modulating the autophagic/lysosomal response by multiple mechanisms.Immunogenetics and cellular immunology of bacterial infectious disease

    An imaging mass cytometry immunophenotyping panel for non-human primate tissues

    No full text
    It has recently become clear that spatial organization contributes to cellular function and that expanding our knowledge on cellular organization is essential to further our understanding of processes in health and disease. Imaging mass cytometry enables high dimensional imaging of tissue while preserving spatial context and is therefore a suitable tool to unravel spatial relationships between cells. As availability of human tissue collected over the course of disease or infection is limited, preclinical models are a valuable source of such material. Non-human primate models are used for translational research as their anatomy, physiology and immune system closely resemble those of humans due to close evolutionary proximity. Tissue from non-human primate studies is often preserved large archives encompassing a range of conditions and organs. However, knowledge on antibody clones suitable for FFPE tissue of non-human primate origin is very limited. Here, we present an imaging mass cytometry panel development pipeline which enables the selection and incorporation of antibodies for imaging of non-human primate tissue. This has resulted in an 18-marker backbone panel which enables visualization of a broad range of leukocyte subsets in rhesus and cynomolgus macaque tissues. This high-dimensional imaging mass cytometry panel can be used to increase our knowledge of cellular organization within tissues and its effect on outcome of disease.Immunogenetics and cellular immunology of bacterial infectious disease

    Systemic and pulmonary C1q as biomarker of progressive disease in experimental non-human primate tuberculosis

    Get PDF
    Tuberculosis (TB) causes 1.6 million deaths annually. Early differential diagnosis of active TB infection is essential in optimizing treatment and reducing TB mortality, but is hampered by a lack of accurate and accessible diagnostics. Previously, we reported on complement component C1q, measured in serum by ELISA, as a candidate biomarker for active tuberculosis. In this work we further examine the dynamics of C1q as a marker of progressive TB disease in non-human primates (NHP). We assessed systemic and pulmonary C1q levels after experimental infection using high or low single dose as well as repeated limiting dose Mycobacterium tuberculosis (Mtb) challenge of macaques. We show that increasing C1q levels, either peripherally or locally, correlate with progressive TB disease, assessed by PET-CT imaging or post-mortem evaluation. Upregulation of C1q did not precede detection of Mtb infection by a conventional interferon-gamma release assay, confirming its association with disease progression. Finally, pulmonary vaccination with Bacillus Calmette Guerin also increased local production of C1q, which might contribute to the generation of pulmonary protective immunity. Our data demonstrate that NHP modelling of TB can be utilized to study the role of C1q as a liquid biomarker in TB protection and disease, complementing findings in TB patients
    corecore