1,512 research outputs found

    The Information Content of Specialist Pricing

    Get PDF
    This paper examines a process by which information-revealing prices are determined by considering the private incentives of a price-setting agent (whom we refer to as a specialist). The specialist has private information that may be (partially) revealed through his choice of a pricing rule. We define an equilibrium as a pricing rule and a response to that rule by a representative trader that maximizes the expected utilities of the specialist and the trader, conditional on each having rational expectations. By analyzing the existence and nature of this equilibrium, we attempt to develop further insights into the behavior of markets with incomplete information

    Snowbeds are more affected than other subalpine-alpine plant communities by climate change in the Swiss Alps

    Get PDF
    While the upward shift of plant species has been observed on many alpine and nival summits, the reaction of the subalpine and lower alpine plant communities to the current warming and lower snow precipitation has been little investigated so far. To this aim, 63 old, exhaustive plant inventories, distributed along a subalpine-alpine elevation gradient of the Swiss Alps and covering different plant community types (acidic and calcareous grasslands; windy ridges; snowbeds), were revisited after 25 to 50-years. Old and recent inventories were compared in terms of species diversity with Simpson diversity and Bray-Curtis dissimilarity indices, and in terms of community composition with Principal Component Analysis. Changes in ecological conditions were inferred from the ecological indicator values. The alpha-diversity increased in every plant community, likely because of the arrival of new species. As observed on mountain summits, the new species led to a homogenisation of community compositions. The grasslands were quite stable in terms of species composition, whatever the bedrock type. Indeed, the newly arrived species were part of the typical species pool of the colonised community. In contrast, snowbed communities showed pronounced vegetation changes and a clear shift towards dryer conditions and shorter snow cover, evidenced by their colonisation by species from surrounding grasslands. Longer growing seasons allow alpine grassland species, which are taller and hence more competitive, to colonise the snowbeds. This study showed that subalpine-alpine plant communities reacted differently to the on-going climate changes. Lower snow/rain ratio and longer growing seasons seem to have a higher impact than warming, at least on plant communities dependent on long snow cover. Consequently, they are the most vulnerable to climate change and their persistence in the near future is seriously threatened. Subalpine and alpine grasslands are more stable and, until now, they do not seem to be affected by a warmer climate

    Calcium-mediated stabilisation of soil organic carbon

    Get PDF
    Soils play an essential role in the global cycling of carbon and understanding the stabilisation mechanisms behind the preservation of soil organic carbon (SOC) pools is of globally recognised significance. Until recently, research into SOC stabilisation has predominantly focused on acidic soil environments and the interactions between SOC and aluminium (Al) or iron (Fe). The interactions between SOC and calcium (Ca) have typically received less attention, with fewer studies conducted in alkaline soils. Although it has widely been established that exchangeable Ca (CaExch) positively correlates with SOC concentration and its resistance to oxidation, the exact mechanisms behind this relationship remain largely unidentified. This synthesis paper critically assesses available evidence on the potential role of Ca in the stabilisation of SOC and identifies research topics that warrant further investigation. Contrary to the common view of the chemistry of base cations in soils, chemical modelling indicates that Ca2+ can readily exchange its hydration shell and create inner sphere complexes with organic functional groups. This review therefore argues that both inner- and outer-sphere bridging by Ca2+ can play an active role in the stabilisation of SOC. Calcium carbonate (CaCO3) can influence occluded SOC stability through its role in the stabilisation of aggregates; however, it could also play an unaccounted role in the direct sorption and inclusion of SOC. Finally, this review highlights the importance of pH as a potential predictor of SOC stabilisation mechanisms mediated by Al- or Fe- to Ca, and their respective effects on SOC dynamics

    Evidence linking calcium to increased organo-mineral association in soils

    Full text link
    Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO3_{3}-bearing) or without carbonates (CaCO3_{3}-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ13^{13}C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ13^{13}C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO3_{3}-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ13^{13}C values. Bulk SOC content was twice as high in the CaCO3_{3}-bearing profiles, which also had lower bulk δ13^{13}C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ13^{13}C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ13^{13}C values

    Spatial modelling of soil water holding capacity improves models of plant distributions in mountain landscapes

    Get PDF
    Aims The aims of this study were: 1) to test a new methodology to overcome the issue of the predictive capacity of soil water availability in geographic space due to measurement scarcity, 2) to model and generalize soil water availability spatially to a whole region, and 3) to test its predictive capacity in plant SDMs. Methods First, we modelled the measured Soil Water Holding Capacity (SWHC at different pFs) of 24 soils in a focal research area, using a weighted ensemble of small bivariate models (ESM). We then used these models to predict 256 locations of a larger region and used the differences in these pF predictions to calculate three different indices of soil water availability for plants (SWAP. These SWAP variables were added one by one to a set of conventional topo-climatic predictors to model 104 plant species distributions. Results We showed that adding SWAP to the SDMs could improve our ability to predict plant species distributions, and more specifically, pF1.8–pF4.2 became the third most important predictor across all plant models. Conclusions Soil water availability can contribute a significant increase in the predictive power of plant distribution models, by identifying important additional abiotic information to describe plant ecological niches

    The discovery of the optical/IR counterpart of the 12s transient X-ray pulsar GS 0834-43

    Get PDF
    We report the discovery of the optical/infra-red counterpart of the 12.3s transient X-ray pulsar GS0834-43. We re-analysed archival ROSAT PSPC observations of GS0834-43, obtaining two new refined positions, about 14" and 18" away from the previously published one, and a new spin period measurement. Within the new error circles we found a relatively faint (V=20.1) early type reddened star (V-R=2.24). The optical spectrum shows a strong Halpha emission line. The IR observations of the field confirm the presence of an IR excess for the Halpha-emitting star (K'=11.4, J-K'=1.94) which is likely surrounded by a conspicuous circumstellar envelope. Spectroscopic and photometric data indicate a B0-2 V-IIIe spectral-type star located at a distance of 3-5kpc and confirm the Be-star/X-ray binary nature of GS0834-43.Comment: 6 pages. Accepted for publication in MNRA

    The Information Content of Specialist Pricing

    Full text link

    On the Angular Resolution of the AGILE gamma-ray imaging detector

    Get PDF
    We present a study of the Angular Resolution of the AGILE gamma-ray imaging detector (GRID) that is operational in space since April 2007. The AGILE instrument is made of an array of 12 planes each equipped with a Tungsten converter and Silicon micros trip detectors and is sensitive in the energy range 50 MeV - 10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploits an analog readout system with dedicated electronics coupled with Silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID, and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its E^{-2} energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ~4deg at 100 MeV; ~0.8deg at 1 GeV; ~0.9deg integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view, being characterized by a flat response up to 30deg off-axis. A comparison of the angular resolution obtained by the two operational gamma-ray instruments, AGILE-GRID and Fermi-LAT, is interesting in view of future gamma-ray missions, that are currently under study. The two instruments exploit different detector configurations affecting the angular resolution: the former being optimized in the readout and track reconstruction especially in the low-energy band, the latter in terms of converter thickness and power consumption. We show that, despite these differences, the angular resolution of both instruments is very similar between 100 MeV and a few GeV.Comment: 19 pages, 8 figures, accepted for publication in Ap

    The Agile Alert System For Gamma-Ray Transients

    Full text link
    In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.Comment: 34 pages, 9 figures, 5 table
    corecore