17 research outputs found

    Modulation du système des endothélines et leur inhibition lors de l'embolie pulmonaire gazeuse : modèle chez le rat anesthésié

    Get PDF
    L’embolie pulmonaire survient lorsqu’un élément vient obstruer la micro-circulation pulmonaire et/ou endommager l’endothélium vasculaire local. Cette pathologie est associée à la libération de médiateurs vasoactifs, au développement d’une hypoxie artérielle et à des désordres hémodynamiques et respiratoires locaux et périphériques. L’embolie pulmonaire gazeuse (EPG) est attribuable à l’infiltration de bulles d’air au sein de la micro-circulation périphérique puis pulmonaire. Aucune stratégie présentement disponible pour traiter l’EPG n’a mené à une utilisation clinique à grande échelle. Il est alors nécessaire d’étudier les mécanismes impliquant les divers médiateurs dans cette pathologie, afin de développer un traitement efficace contre les désordres hémodynamiques variés que présentent les patients souffrant d’EP. Les endothélines (ETs; ET-1, -2, -3) forment une famille de médiateurs ayant une action vasoconstrictrice et bronchoconstrictrice. Ces trois isopeptides sont exprimés et libérés directement par les cellules endothéliales du poumon, mais aussi par les cellules musculaires lisses pulmonaires et vasculaires, ainsi que par les macrophages et les glandes submucosales. Les deux publications insérées dans ce mémoire tendent à démontrer que les premiers médiateurs libérés suite à l’induction d’une EPG aigüe seraient des membres de la famille des endothélines, notamment l’endothéline-1. Ces études s’intéressent à l’implication pharmacologique de cette hypothèse en évaluant l’efficacité de différentes molécules synthétisées dans l’objectif de bloquer l’action du système des endothélines, ainsi que leur intérêt pour le traitement de l’embolie pulmonaire. Les résultats présentés dans cet ouvrage portent sur l’étude d’un antagoniste de récepteur de l’endothéline et d’un inhibiteur de l’enzyme de conversion de l’endothéline. Ces deux bloqueurs diminuent l’étendu des dysfonctions cardio-respiratoires, mais ne préviennent pas l’effondrement circulatoire systémique qui survient peu après le début de l’induction de la pathologie. De plus, afin d’obtenir un modèle expérimental pré-clinique encore plus représentatif de la pathologie humaine, quelques améliorations ont été apportées au modèle de rat d’EPG aigüe élaboré préalablement par notre laboratoire.Pulmonary embolism (PE) is caused by the physical obstruction and subsequent injuries to the pulmonary microvasculature. This pathology is associated with the liberation of vasoactive mediators, and with the development of arterial hypoxia and local and systemic respiratory disorders. Pulmonary air embolism (PAE) is caused by air bubbles’ infiltration into the systemic blood circulation, then into pulmonary blood circulation. Until now, no strategy has lead to a large-scale clinical use for the treatment of PAE. Thus, it becomes necessary to study the mechanisms of this pathology implicating various mediators, with the objective of developing an efficient treatment against the different hemodynamic disorders observed in PAE affected patients. Endothelins (ETs; ET-1, -2, -3) form a family of vasoconstrictor and bronchoconstrictor mediators. These three isopeptides are expressed and secreted by endothelial cells in the lung, but also by pulmonary and vascular smooth muscle cells and macrophages. Both publications included in this thesis tend to demonstrate that the first mediators secreted following an acute PAE induction are part of the Endothelins family, especially Endothelin-1. The studies focussed on the pharmacological implication of this hypothesis by evaluating the efficiency of various molecules synthesized to block the action of the Endothelins system, and their interest for the treatment of PE. Studies presented in this work used an Endothelin receptor antagonist or an Endothelin-converting-enzyme inhibitor. These two blockers decreased the extent of cardio-respiratory disorders related to PAE, but did not prevent the systemic circulatory collapse observed shortly after the beginning of the induction of the pathology. With the idea of developing a pre-clinical experimental rat model more representative of the human pathology of acute PAE, some improvements have been made on the model previously developed by our laboratory

    Improving treatment outcomes in models of glioblastoma cancer

    No full text
    Introduction: Despite the use of treatments, tumour recurrence in glioblastoma (GBM) patients is inevitable, partly because of the blood-brain barrier and the poor perfusion of the tumour vasculature, which act as two major obstacles to effective drug delivery. In order to address the latter, the capacity of liposomal formulations of irinotecan (Irinophore CTM; IrCTM), doxorubicin (Caelyx®) and vincristine to improve vascular function through normalization of GBM vasculature was assessed. In the following studies, the effect of IrCTM on the pharmacokinetics of irinotecan and its therapeutic efficacy in an orthotopic GBM model was compared to administration of the free form of the drug. In addition, siRNA-based therapy was explored as a potential strategy to enhance the efficacy of chemotherapeutics such as irinotecan. In one series of studies, the impact of cationic liposomes used for in vitro ILK (Integrin-Linked Kinase)-targeting siRNA delivery was compared to electroporation. Following successful identification of the most efficacious siRNA delivery method, EGFR and Rictor were selected as therapeutic targets because these proteins are involved in two of the most common molecular pathways reported to be dysregulated in GBM. The therapeutic potential of the combined silencing of EGFR and Rictor was assessed in in vitro and in vivo models of GBM. Results and conclusion: It was found that IrCTM, Caelyx® and liposomal vincristine induce vascular normalization in GBM tumours. It was also demonstrated that IrCTM increases exposure of the brain to irinotecan and its active metabolite SN-38 and improves survival of GBM tumour-bearing animals compared to treatment with free irinotecan. In vitro siRNA transfection using cationic lipids was found to alter the ILK downregulation time course compared to electroporation and to induce changes in pathway signaling that occurred independently of ILK silencing. Combined silencing of EGFR and Rictor reduced cell migration and increased cell sensitivity to chemotherapeutics in vitro. In vivo, dual silencing of EGFR and Rictor led to GBM tumour eradication. In parallel, GBM cell lines expressing red fluorescent proteins were developed as a tool for orthotopic GBM tumour imaging in live animals. These studies demonstrate the potential of siRNA-based therapy targeting EGFR and Rictor to act in combination with optimized chemotherapy agents such as IrCTM to improve treatment outcome in GBM.Medicine, Faculty ofPathology and Laboratory Medicine, Department ofGraduat

    Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes

    No full text
    International audienceGlioblastoma (GBM) is the most frequent and deadliest primary brain cancer in adults, justifying the search for new treatments. Some members of the iron-based ferrocifen family have demonstrated a high cytotoxic effect on various cancer cell lines via innovative mechanisms of action. Here, we evaluated the antiproliferative activity by wst-1 assay of six ferrocifens in 15 molecularly diverse GBM patient-derived cell lines (PDCLs). In five out of six compounds, the half maximal inhibitory concentration (IC50) values varied significantly (10 nM < IC50 < 29.8 µM) while the remaining one (the tamoxifen-like complex) was highly cytotoxic against all PDCLs (mean IC50 = 1.28 µM). The pattern of response was comparable for the four ferrocifens bearing at least one phenol group and differed widely from those of the tamoxifen-like complex and the complex with no phenol group. An RNA sequencing differential analysis showed that response to the diphenol ferrocifen relied on the activation of the Death Receptor signaling pathway and the modulation of FAS expression. Response to this complex was greater in PDCLs from the Mesenchymal or Proneural transcriptomic subtypes compared to the ones from the Classical subtype. These results provide new information on the mechanisms of action of ferrocifens and highlight a broader diversity of behavior than previously suspected among members of this family. They also support the case for a molecular-based personalized approach to future use of ferrocifens in the treatment of GBM

    Blood-brain barrier, cytotoxic chemotherapies and glioblastoma

    No full text
    International audienceIntroduction: Glioblastomas (GBM) are the most common and aggressive primary malignant brain tumors in adults. The blood brain barrier (BBB) is a major limitation reducing efficacy of anti-cancer drugs in the treatment of GBM patients.Areas covered: Virtually all GBM recur after the first-line treatment, at least partly, due to invasive tumor cells protected from chemotherapeutic agents by the intact BBB in the brain adjacent to tumor. The passage through the BBB, taken by antitumor drugs, is poorly and heterogeneously documented in the literature. In this review, we have focused our attention on: (i) the BBB, (ii) the passage of chemotherapeutic agents across the BBB and (iii) the strategies investigated to overcome this barrier.Expert commentary: A better preclinical knowledge of the crossing of the BBB by antitumor drugs will allow optimizing their clinical development, alone or combined with BBB bypassing strategies, towards an increased success rate of clinical trials

    Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist

    Get PDF
    International audienceDue to the absence of curative treatments for glioblastoma (GBM), we assessed the efficacy of single and combination treatments with a translationally relevant 2nd generation TRAIL-receptor agonist (IZI1551) and the blood-brain barrier (BBB) permeant proteasome inhibitor marizomib in a panel of patient-derived glioblastoma cell lines. These cells were cultured using protocols that maintain the characteristics of primary tumor cells. IZI1551+marizomib combination treatments synergistically induced apoptotic cell death in the majority of cases, both in 2D, as well as in 3D spheroid cultures. In contrast, single-drug treatments largely failed to induce noticeable amounts of cell death. Kinetic analyses suggested that time-shifted drug exposure might further increase responsiveness, with marizomib pre-treatments indeed strongly enhancing cell death. Cell death responses upon the addition of IZI1551 could also be observed in GBM cells that were kept in a medium collected from the basolateral side of a human hCMEC/D3 BBB model that had been exposed to marizomib. Interestingly, the subset of GBM cell lines resistant to IZI1551+marizomib treatments expressed lower surface amounts of TRAIL death receptors, substantially lower amounts of procaspase-8, and increased amounts of cFLIP, suggesting that apoptosis initiation was likely too weak to initiate downstream apoptosis execution. Indeed, experiments in which the mitochondrial apoptosis threshold was lowered by antagonizing Mcl-1 re-established sensitivity to IZI1551+marizomib in otherwise resistant cells. Overall, our study demonstrates a high efficacy of combination treatments with a latest-generation TRAIL receptor agonist and the BBB permeant proteasome inhibitor marizomib in relevant GBM cell models, as well as strategies to further enhance responsiveness and to sensitize subgroups of otherwise resistant GBM cases

    Transcriptional CDK inhibitors, CYC065 and THZ1 promote Bim-dependent apoptosis in primary and recurrent GBM through cell cycle arrest and Mcl-1 downregulation

    Get PDF
    Activation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.</p

    Oxazolo[5,4-f]quinoxaline-type selective inhibitors of glycogen synthase kinase-3α (GSK-3α): Development and impact on temozolomide treatment of glioblastoma cells

    No full text
    International audienceThe 2-(3-pyridyl)oxazolo[5,4-f]quinoxalines CD-07 and FL-291 are ATP-competitive GSK-3 kinase inhibitors. Here, we investigated the impact of FL-291 on neuroblastoma cell viability and showed that treatment at 10 μM (i.e. ∼500 times the IC50 against the GSK-3 isoforms) has no significant effect on the viability of NSC-34 motoneuron-like cells. A study performed on primary neurons (non-cancer cells) led to similar results. The structures co-crystallized with GSK-3β revealed similar binding modes for FL-291 and CD-07, with their hinge-oriented planar tricyclic system. Both GSK isoforms show the same orientations for the amino acids at the binding pocket except for Phe130 (α) and Phe67 (β), leading to a larger pocket on the opposite side of the hinge region for the α isoform. Calculations of the thermodynamic properties of the binding pockets highlighted the required features of potential ligands; these should have a hydrophobic core (which could be larger in the case of GSK-3β) surrounded by polar areas (a little more polar in the case of GSK-3α). A library of 27 analogs of FL-291 and CD-07 was thus designed and synthesized by taking advantage of this hypothesis. While the introduction of substituents at different positions of the pyridine ring, the replacement of the pyridine by other heterocyclic moieties, or the replacement of the quinoxaline ring by a quinoline moiety did not lead to any improvement, the replacement of the N-(thio)morpholino of FL-291/CD-07 by a slightly more polar N-thiazolidino led to a significant result. Indeed, the new inhibitor MH-124 showed clear selectivity for the α isoform, with IC50 values of 17 nM and 239 nM on GSK-3α and GSK-3β, respectively. Finally, the efficacy of MH-124 was evaluated on two glioblastoma cell lines. Although MH-124 alone did not have a significant impact on cell survival, its addition to temozolomide (TMZ) significantly reduced the TMZ IC50 values on the cells tested. The use of the Bliss model allowed a synergy to be evidenced at certain concentrations

    Multi-omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors

    No full text
    International audienceBackground. Glioblastoma (GBM) is the deadliest primary brain cancer in adults. Emerging innovative therapies hold promise for personalized cancer treatment. Improving therapeutic options depends on research relying on relevant preclinical models. In this line we have established in the setting of the GlioTex project (GBM and Experimental Therapeutics) a GBM patient-derived cell line (GBM-PDCL) library. A multi-omic approach was used to determine the molecular landscape of PDCL and the extent to which they represent GBM tumors.Methods. Single nucleotide polymorphism array, expression arrays, exome sequencing, and RNA sequencing were used to measure and compare the molecular landscapes of 20 samples representing 10 human GBM tumors and paired GBM-PDCLs.Results. Copy number variations were similar for a median of 85% of the genome and for 59% of the major focal events. Somatic point mutations were similar in a median of 41%. Mutations in GBM driver and “druggable” genes were maintained in 67% of events. Mutations that were not conserved in the PDCL were mainly low allelic fraction and/or non-driver mutations. Based on RNA expression profiling, PDCLs cluster closely to their parental tumor with overexpression of pathways associated with cancer progression in PDCL.Conclusions. Overall, PDCLs recapitulate pivotal molecular alterations of paired-parental tumors supporting their use as a preclinical model of GBM. However, some driver aberrations are lost or gained in the passage from tumor to PDCL. Our results support using PDCL as a relevant preclinical model of GBM. Further investigations of changes between PDCLs and their parental tumor may provide insights into GBM biology
    corecore