287 research outputs found
Seeing the baby, doing family: commercial ultrasound as family practice?
Medical sociologists and anthropologists have studied the social significance of obstetric ultrasound for families but little is known about how women and families make use of commercially available ultrasound scans. This article draws on interviews with women who booked a scan with a commercial company in the UK. For some women, commercial ultrasound can be understood as a family practice. We investigate this theme by examining who accompanies women to commercial scan appointments, how scan images are shared and how sonograms are used as prompts to resemblance talk. We argue that commercial scans are more than an additional opportunity to acquire ‘baby’s first picture’ and offer a flexible resource to do family, creating and affirming family relationships and rehearsing roles as parents, siblings and grandparents. Our findings confirm the importance of imagination in doing family and raise questions about the role of technology and commercial interests in shaping family practices
China’s Weibo: is faster different?
The popularization of microblogging in China represents a new challenge to the state’s regime of information control. The speed with which information is diffused in the microblogosphere has helped netizens to publicize and express their discontent with the negative consequences of economic growth, income inequalities and official corruption. In some cases, netizen led initiatives have facilitated the mobilization of online public opinion and forced the central government to intervene to redress acts of lower level malfeasance. However, despite the growing corpus of such cases, the government has quickly adapted to the changing internet ecology and is using the same tools to help it maintain control of society by enhancing its claims to legitimacy, circumscribing dissent, identifying malfeasance in its agents and using online public opinion to adapt policy and direct propaganda efforts. This essay reflects on microblogging in the context of the Chinese internet, and argues that successes in breaking scandals and mobilizing opinion against recalcitrant officials should not mask the reality that the government is utilizing the microblogosphere to its own advantage
Practical microbiology in schools: a survey of UK teachers
A survey of secondary school teachers investigated practical microbiology in the classroom. The results were heartening (practical microbiology was common), but concerns were expressed regarding equipment, time, cost, and expertise. Microbiologists should engage more with school education to support teachers and maintain the health of microbiology for future generations
Bayesian Probability and Statistics in Management Research: A New Horizon
This special issue is focused on how a Bayesian approach to estimation, inference, and reasoning
in organizational research might supplement—and in some cases supplant—traditional frequentist
approaches. Bayesian methods are well suited to address the increasingly complex phenomena
and problems faced by 21st-century researchers and organizations, where very complex data
abound and the validity of knowledge and methods are often seen as contextually driven and
constructed. Traditional modeling techniques and a frequentist view of probability and method
are challenged by this new reality
Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.
Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
Reproducibility of Bacterial Cellulose Nanofibers Over Sub-Cultured Generations for the Development of Novel Textiles
The textile industry is in crisis and under pressure to minimize the environmental impact on its practices. Bacterial cellulose (BC), a naturally occurring form of cellulose, displays properties superior to those of its cotton plant counterpart, such as enhanced purity, crystallinity, tensile strength, and water retention and is thus suitable for an array of textile applications. It is synthesized from a variety of microorganisms but is produced in most abundance by Komagataeibacter xylinus. K. xylinus is available as a type strain culture and exists in the microbial consortium commonly known as Kombucha. Whilst existing literature studies have described the effectiveness of both K. xylinus isolates and Kombucha in the production of BC, this study investigated the change in microbial communities across several generations of sub-culturing and the impact of these communities on BC yield. Using Kombucha and the single isolate strain K. xylinus as inocula in Hestrin and Schramm liquid growth media, BC pellicles were propagated. The resulting pellicles and residual liquid media were used to further inoculate fresh liquid media, and this process was repeated over three generations. For each generation, the thickness of the pellicles and their appearance under SEM were recorded. 16S rRNA sequencing was conducted on both pellicles and liquid media samples to assess changes in communities. The results indicated that the genus Komagataeibacter was the most abundant species in all samples. Cultures seeded with Kombucha yielded thicker cellulose pellicles than those seeded with K. xylinus, but all the pellicles had similar nanofibrillar structures, with a mix of liquid and pellicle inocula producing the best yield of BC after three generations of sub-culturing. Therefore, Kombucha starter cultures produce BC pellicles which are more reproducible across generations than those created from pure isolates of K. xylinus and could provide a reproducible sustainable model for generating textile materials
Antifungal activity of commercial essential oils and biocides against Candida Albicans
Management of oral candidosis, most frequently caused by Candida albicans, is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% (v/v) to 0.4% (v/v)) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% (v/v)). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans, although host cell cytotoxicity is a consideration when developing these new treatments
Quantifying the pattern of microbial cell dispersion, density and clustering on surfaces of differing chemistries and topographies using multifractal analysis
The effects of surface topography on bacterial distribution across a surface are of extreme importance when designing novel, hygienic or antimicrobial surface coatings. The majority of methods that are deployed to describe the pattern of cell dispersion, density and clustering across surfaces are currently qualitative. This paper presents a novel application of multifractal analysis to quantitatively measure these factors using medically relevant microorganisms (Staphylococcus aureus or Staphylococcus epidermidis). Surfaces (medical grade 316 stainless steel) and coatings (Ti–ZrN, Ti–ZrN/6.0%Ag, Ti–ZrN/15.6%Ag, TiZrN/24.7%Ag) were used in microbiological retention assays. Results demonstrated that S. aureus displayed a more heterogeneous cell dispersion (∆αAS < 1) whilst the dispersion of S. epidermidis was more symmetric and homogeneous (∆αAS ≥ 1). Further, although the surface topography and chemistry had an effect on cell dispersion, density and clustering, the type of bonding that occurred at the surface interface was also important. Both types of cells were influenced by both surface topographical and chemical effects; however, S. aureus was influenced marginally more by surface chemistry whilst S. epidermidis cells was influenced marginally more by surface topography. Thus, this effect was bacterially species specific. The results demonstrate that multifractal analysis is a method that can be used to quantitatively analyse the cell dispersion, density and clustering of retained microorganisms on surfaces. Using quantitative descriptors has the potential to aid the understanding the effect of surface properties on the production of hygienic and antimicrobial coatings
Nano-layered inorganic-organic hybrid materials for the controlled delivery of antimicrobials
An essential oil (EO) blend has been identified that provides a broad spectrum potent antimicrobial effect. Adsorption of the EO onto porous silicate materials (Rockwood Additives: Laponite® B, Laponite® RD and Fulcat® 800) and has been analysed and it was found that Laponite® RD organically modified with dihydrogenated tallow dimethyl ammonium chloride (2HT2M) at 50% cation exchange capacity gave the highest levels of adsorption. The Laponite® RD 2HT2M with EO blend adsorbed has been added to polymer materials to produce an antimicrobial polymer. The adsorption of the EO onto the Laponite® RD was done to achieve controlled release of the EO to prolong the antimicrobial effect within the polymer. Addition of the EO loaded substrates into silicone elastomer has resulted in successfully conferring a high level of antimicrobial activity to the polymer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
SimFection: a digital resource for vaccination education
© 2018 Royal Society of Biology. Vaccination coverage in the United Kingdom is below the level recommended by the World Health Organisation, and when vaccination coverage is not sufficient, outbreaks of infectious diseases can occur. In 2015, coverage of the first dose of the Measles-Mumps-Rubella vaccine declined in the United Kingdom for the first time since 2008, indicating a need to raise public awareness and understanding of the importance of vaccination to public health. Identifying 16 – 18-year olds as a target audience, being future parents who would make decisions regarding vaccination of their children, a digital educational resource (‘SimFection’) was developed to deliver key messages about the spread and control of vaccine-preventable infectious diseases (identified via school curricula). The process of development utilised an iterative approach, involving a cyclic process of prototyping, testing, analysis and refinement with a range of audiences including students, schoolchildren, and trainee teachers. The completed resource is now available online for free download
- …
