25 research outputs found

    Novel Cell Penetrating Peptides Effect Endosomal Escape and Deliver Protein Cargos into Living Cells

    Get PDF
    Over the last decade a number of peptides that are rapidly internalized by mammalian cells have been discovered or designed. Cell-penetrating peptides (CPPs) are capable of mediating penetration of the plasma membrane, allowing delivery of macromolecular cargoes to the cell interior. We have developed a novel CPP-adaptor protein technology that allows any user-defined cargo delivery and release into the cytoplasm. Our hypothesis is that a CPP-adaptor with a moiety allowing high-affinity but reversible non-covalent cargo binding would lead to more efficient penetration and release than current CPP delivery strategies. Delivery of proteins to the interiors of cells has many applications. In addition to detecting and mapping the location of the components of living cells with fluorescent tags in real time, the availability of our system will likely enable the manipulation of signaling pathways and gene expression by allowing the introduction of components, e.g. constitutively active kinases, repressors or enhancers. CPP-adaptor, TaT-Calmodulin, and cargo proteins (horse radish peroxidase, myoglobin and beta-galactosidase) were expressed and purified from E. coli BL21 (DE3)pLysS. Optical biosensing experiments demonstrated that affinity and kinetics between the novel CPP and cargo proteins did not significantly differ from wild-type interactions; all had subnanomolar affinities. Cargo proteins were labelled with DyLight 550. CPP-cargo complexes or cargo alone were incubated with subconfluent baby hamster kidney, HEK 293T and HT-3 cells. After washing, cells were imaged by fluorescence confocal microscopy. All users define cargos exhibited penetration and release to the cytoplasm whereas cargo-only controls exhibited no measurable penetration (though some adherence to the outside of the cells was observed). Time courses and dose-dependency studies characterizing penetration and release kinetics will be presented as will initial efforts to deliver cargo that may alter cell-signaling pathways. The results presented herein demonstrate the feasibility of delivering a wide variety of cargo proteins to the intracellular environment; creating an array of potential research, diagnostic and therapeutic applications

    The SH3 Domain of UNC-89 (obscurin) Interacts with Paramyosin, a Coiled-coil Protein, in Caenorhabditis Elegans Muscle

    Get PDF
    UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89’s SH3 domain and residues 294–376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89’s SH3 is α-helical and lacks prolines. Homology modeling of UNC-89’s SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a “skip residue,” which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity

    An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples.

    Get PDF
    MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination

    Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples

    Get PDF
    We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website

    Novel Cell Penetrating Peptide-adaptors Effect Intracellular Delivery and Endosomal Escape of Protein Cargos

    Get PDF
    The use of cell penetrating peptides (CPPs) as biomolecular delivery vehicles holds great promise for therapeutic and other applications, but development has been stymied by poor delivery and lack of endosomal escape. We have developed a CPP-adaptor system capable of efficient intracellular delivery and endosomal escape of user-defined protein cargos. The cell penetrating sequence of HIV transactivator of transcription was fused to calmodulin, which binds with subnanomolar affinity to proteins containing a calmodulin binding site. Our strategy has tremendous advantage over prior CPP technologies because it utilizes high affinity noncovalent, but reversible coupling between CPP and cargo. Three different cargo proteins fused to a calmodulin binding sequence were delivered to the cytoplasm of eukaryotic cells and released, demonstrating the feasibility of numerous applications in living cells including alteration of signaling pathways and gene expression

    A versatile cell-penetrating peptide-adaptor system for efficient delivery of molecular cargos to subcellular destinations.

    Get PDF
    Cell penetrating peptides have long held great potential for delivery of biomolecular cargos for research, therapeutic and diagnostic purposes. They allow rapid, relatively nontoxic passage of a wide variety of biomolecules through the plasma membranes of living cells. However, CPP-based research tools and therapeutics have been stymied by poor efficiency in release from endosomes and a great deal of effort has been made to solve this 'endosomal escape problem.' Previously, we showed that use of a reversible, noncovalent coupling between CPP and cargo using calmodulin and a calmodulin binding motif allowed efficient delivery of cargo proteins to the cytoplasm in baby hamster kidney and other mammalian cell lines. The present report demonstrates the efficacy of our CPP-adaptor scheme for efficient delivery of model cargos to the cytoplasm using a variety of CPPs and adaptors. Effective overcoming of the endosomal escape problem is further demonstrated by the delivery of cargo to the nucleus, endoplasmic reticulum and peroxisomes by addition of appropriate subcellular localization signals to the cargos. CPP-adaptors were also used to deliver cargo to myotubes, demonstrating the feasibility of the system as an alternative to transfection for the manipulation of hard-to-transfect cells

    Biolayer interferometry analysis of subcellular localization constructs.

    No full text
    <p>TAT-CaM was used as ligand and analytes were CBS-myoglobin-NLS (green), CBS-myoglobin-KDEL (blue), CBS-myoglobin-SKL (red). Phases, analyte concentrations and fits are the same as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0178648#pone.0178648.g001" target="_blank">Fig 1</a>.</p

    TAT-CaM localization.

    No full text
    <p>Cell penetration assay performed with complexes of fluorescently labelled TAT-CaM and unlabeled myoglobin at 10 nM (top) and 100 nM (bottom). Fluorescence rendering is the same as <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0178648#pone.0178648.g001" target="_blank">Fig 1</a> (Dylight fluorescence is white in the left panels and red in the center and right panels).</p
    corecore