405 research outputs found

    Microinjection Manipulation Resulted in the Increased Apoptosis of Spermatocytes in Testes from Intracytoplasmic Sperm Injection (ICSI) Derived Mice

    Get PDF
    The invention of intracytoplasmic sperm injection (ICSI) has possibly been the most important development in reproductive medicine, one that has given hope to thousands of infertile couples worldwide. However, concerns remain regarding the safety of this method since it is a more invasive procedure than in vitro fertilization (IVF), since a spermatozoon is injected into the oocyte cytoplasm. Using mice derived from IVF technology as a control, we assessed the influence of invasive microinjection in the process of transferring sperm into oocyte cytoplasm in ICSI procedure on the development and physiologic function of resultant offspring. Our results demonstrated that mice produced from ICSI and IVF had no significant difference in phenotypic indices including body weight, forelimb physiology, and learning and memory ability. However, increased spermatocyte apoptosis was observed in the testis of adult ICSI mice, when compared with IVF mice. And, decreased testis weight and marked damage of spermatogenic epithelia were found in aged ICSI mice. Furthermore, proteomic analysis verified that most of the differentiated proteins in testes between adult ICSI and IVF mice were those involved in regulation of apoptosis pathways. Our results demonstrated that the microinjection manipulation used in the ICSI procedure might pose potential risks to the fertility of male offspring. The changed expression of a series of proteins relating to apoptosis or proliferation might contribute to it. Further studies are necessary to better understand all the risks of ICSI

    Testing Hadronic Interaction Models with Cosmic Ray Measurements at the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory provides the opportunity to perform unique measurements of cosmic-ray air showers with its combination of a surface array and a deep detector. Electromagnetic particles and low-energy muons (∼GeV) are detected by IceTop, while a bundle of high-energy muons (>~400 GeV) can be measured in coincidence in IceCube. Predictions of air-shower observables based on simulations show a strong dependence on the choice of the high-energy hadronic interaction model. By reconstructing different composition-dependent observables, one can provide strong tests of hadronic interaction models, as these measurements should be consistent with one another. In this work, we present an analysis of air-shower data between 2.5 and 80 PeV, comparing the composition interpretation of measurements of the surface muon density, the slope of the IceTop lateral distribution function, and the energy loss of the muon bundle, using the models Sibyll 2.1, QGSJet-II.04 and EPOS-LHC. We observe inconsistencies in all models under consideration, suggesting they do not give an adequate description of experimental data. The results furthermore imply a significant uncertainty in the determination of the cosmic-ray mass composition through indirect measurements

    Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope

    Get PDF
    We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube Neutrino Telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric νμ and ¯νμ events we construct confidence intervals in two analysis spaces: sin2(2θ24_{24}) vs Δm2¦41 under the conservative assumption θ34_{34}=0; and sin2^{2} (2θ24_{24}) vs sin2^{2} (2θ34_{34}) given sufficiently large Δm2¦41 that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p value of 8% in the first analysis space and 19% in the second

    eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory

    Get PDF
    The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100  eV2^{2}. The best-fit point is found to be at sin2^{2} (2θ24_{24})=0.10 and Δm2/41 =4.5  eV2^{2}, which is consistent with the no sterile neutrino hypothesis with a p value of 8.0%

    Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope

    Get PDF
    We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube neutrino telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric νμ\nu_\mu and νˉμ\bar{\nu}_\mu events we construct confidence intervals in two analysis spaces: sin2(2θ24)\sin^2 (2\theta_{24}) vs. Δm412\Delta m^2_{41} under the conservative assumption θ34=0\theta_{34}=0; and sin2(2θ24)\sin^2(2\theta_{24}) vs. sin2(2θ34)\sin^2 (2\theta_{34}) given sufficiently large Δm412\Delta m^2_{41} that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p-value of 8\% in the first analysis space and 19\% in the second.Comment: This long-form paper is a companion to the letter "An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory". v2: update other experiments contours on results plo

    Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data

    Get PDF
    We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (90%\sim 90 \%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16TeV16\,\mathrm{TeV} to 2.6PeV2.6\,\mathrm{PeV}, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07\gamma=2.53\pm0.07 and a flux normalization for each neutrino flavor of ϕastro=1.660.27+0.25\phi_{astro} = 1.66^{+0.25}_{-0.27} at E0=100TeVE_{0} = 100\, \mathrm{TeV}, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices γ2.28\gamma\leq2.28 at 3σ\ge3\sigma significance level. Due to high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below 100TeV\sim100\,{\rm{TeV}} compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value 0.06\ge 0.06). The sizable and smooth flux measured below 100TeV\sim 100\,{\rm{TeV}} remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi-LAT, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma-rays.Comment: 4 figures, 4 tables, includes supplementary materia

    IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

    Get PDF
    Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray emitters. In the absence of any significant correlation, we set upper limits on the total neutrino emission from those PWNe and constraints on hadronic spectral components.Comment: 11 pages, 2 figures; matches the published version in Ap

    IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog

    Full text link
    Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each gravitational wave event within a 1000 second time window centered around the reported merger time. One search uses a model-independent unbinned maximum likelihood analysis, which uses neutrino data from IceCube to search for point-like neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events. These limits range from 0.02-0.7 GeV cm2\mathrm{GeV~cm^{-2}}. We also set limits on the total isotropic equivalent energy, EisoE_{\mathrm{iso}}, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 ×\times 1051^{51} - 1.8 ×\times 1055^{55} erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time

    An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory

    Get PDF
    The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305,735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01\,eV2^2 and 100\,eV2^2. The best-fit point is found to be at sin2(2θ24)=0.10\sin^2(2\theta_{24})=0.10 and Δm412=4.5eV2\Delta m_{41}^2 = 4.5{\rm eV}^2, which is consistent with the no sterile neutrino hypothesis with a p-value of 8.0\%.Comment: 11 pages, 5 figures. This letter is supported by the long-form paper "Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope," also appearing on arXiv. Digital data release available at: https://github.com/icecube/HE-Sterile-8year-data-releas
    corecore