1,249 research outputs found

    In The Valley Of Yesterday

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4657/thumbnail.jp

    Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability

    Get PDF
    Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V2O5 as a surface electron accepting material. Contact between the oxide and diamondsurface promotes the transfer of electrons from the diamond into the V2O5 as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V2O5 deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 1012 to 1.8 × 1013 cm−2 at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channel produced using V2O5 in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V2O5 is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer dopin

    Spectroscopic properties and radiation damage investigation of a diamond based Schottky diode for ion-beam therapy microdosimetry

    Get PDF
    In this work, a detailed analysis of the properties of a novel microdosimeter based on a synthetic single crystal diamond is reported. Focused ion microbeams were used to investigate the device spectropscopic properties as well as the induced radiation damageeffects. A diamond based Schottky diode was fabricated by chemical vapor deposition with a very thin detecting region, about 400 nm thick (approximately 1.4 μm water equivalent thickness), corresponding to the typical size in microdosimetric measurements. A 200 × 200 μm2 square metallic contact was patterned on the diamond surface by standard photolithography to define the sensitive area. Experimental measurements were carried out at the Ruder Boškovic′ Institute microbeam facility using 4 MeV carbon and 5 MeV silicon ions. Ion beam induced charge maps were employed to characterize the microdosimeter response in terms of its charge collection properties. A stable response with no evidence of polarization or memory effects was observed up to the maximum investigated ion beam flux of about 1.7 × 109 ions·cm−2·s−1. A homogeneity of the response about 6% was found over the sensitive region with a well-defined confinement of the response within the active area. Tests of the radiation damageeffect were performed by selectively irradiating small areas of the device with different ion fluences, up to about 1012 ions/cm2. An exponential decrease of the charge collection efficiency was observed with a characteristic decay constant of about 4.8 MGy and 1 MGy for C and Si ions, respectively. The experimental data were analyzed by means of GEANT4 Monte Carlo simulations. A direct correlation between the diamond damaging effect and the Non Ionizing Energy Loss (NIEL) fraction was found. In particular, an exponential decay of the charge collection efficiency with an exponential decay as a function of NIEL is observed, with a characteristic constant of about 9.3 kGy-NIEL for both carbon and silicon ions

    Photo-physical properties of He-related color centers in diamond

    Get PDF
    Diamond is a promising platform for the development of technological applications in quantum optics and photonics. The quest for color centers with optimal photo-physical properties has led in recent years to the search for novel impurity-related defects in this material. Here, we report on a systematic investigation of the photo-physical properties of two He-related (HR) emission lines at 535 nm and 560 nm created in three different diamond substrates upon implantation with 1.3 MeV He+ ions and subsequent annealing. The spectral features of the HR centers were studied in an "optical grade" diamond substrate as a function of several physical parameters, namely the measurement temperature, the excitation wavelength and the intensity of external electric fields. The emission lifetimes of the 535 nm and 560 nm lines were also measured by means of time-gated photoluminescence measurements, yielding characteristic decay times of (29 +- 5) ns and (106 +- 10) ns, respectively. The Stark shifting of the HR centers under the application of an external electrical field was observed in a CVD diamond film equipped with buried graphitic electrodes, suggesting a lack of inversion symmetry in the defects' structure. Furthermore, the photoluminescence mapping under 405 nm excitation of a "detector grade" diamond sample implanted at a 1x1010 cm-2 He+ ion fluence enabled to identify the spectral features of both the HR emission lines from the same localized optical spots. The reported results provide a first insight towards the understanding of the structure of He-related defects in diamond and their possible utilization in practical applicationsComment: 9 pages, 3 figure

    On the measurement uncertainty of microdosimetric quantities using diamond and silicon microdosimeters in carbon-ion beams

    Get PDF
    Purpose: The purpose of this paper is to compare the response of two different types of solid-state microdosimeters, that is, silicon and diamond, and their uncertainties. A study of the conversion of silicon microdosimetric spectra to the diamond equivalent for microdosimeters with different geometry of the sensitive volumes is performed, including the use of different stopping power databases. Method: Diamond and silicon microdosimeters were irradiated under the same conditions, aligned at the same depth in a carbon-ion beam at the MedAustron ion therapy center. In order to estimate the microdosimetric quantities, the readout electronic linearity was investigated with three different methods, that is, the first being a single linear regression, the second consisting of a double linear regression with a channel transition and last a multiple linear regression by splitting the data into odd and even groups. The uncertainty related to each of these methods was estimated as well. The edge calibration was performed using the intercept with the horizontal axis of the tangent through the inflection point of the Fermi function approximation multi-channel analyzer spectrum. It was assumed that this point corresponds to the maximum energy difference of particle traversing the sensitive volume (SV) for which the residual range difference in the continuous slowing down approximation is equal to the thickness of the SV of the microdosimeter. Four material conversion methods were explored, the edge method, the density method, the maximum-deposition energy method and the bin-by-bin transformation method. The uncertainties of the microdosimetric quantities resulting from the linearization, the edge calibration and the detectors thickness were also estimated. Results: It was found that the double linear regression had the lowest uncertainty for both microdosimeters. The propagated standard (k = 1) uncertainties on the frequency-mean lineal energy y¯FyˉF{\bar{y}}_{\rm{F}} and the dose-mean lineal energy y¯DyˉD{\bar{y}}_{\rm{D}} values from the marker point, in the spectra, in the plateau were 0.1% and 0.2%, respectively, for the diamond microdosimeter, whilst for the silicon microdosimeter data converted to diamond, the uncertainty was estimated to be 0.1%. In the range corresponding to the 90% of the amplitude of the Bragg Peak at the distal part of the Bragg curve (R90 ) the uncertainty was found to be 0.1%. The uncertainty propagation from the stopping power tables was estimated to be between 5% and 7% depending on the method. The uncertainty on the y¯FyˉF{\bar{y}}_{\rm{F}} and y¯DyˉD{\bar{y}}_{\rm{D}} coming from the thickness of the detectors varied between 0.3% and 0.5%. Conclusion: This article demonstrate that the linearity of the readout electronics affects the microdosimetric spectra with a difference in y¯FyˉF{\bar{y}}_{\rm{F}} values between the different linearization methods of up to 17.5%. The combined uncertainty was dominated by the uncertainty of stopping power on the edge

    Gate-source distance scaling effects in H-terminated diamond MESFETs

    Get PDF
    In this paper, an analysis of gate-source and gate-drain scaling effects in MESFETs fabricated on hydrogen-terminated single-crystal diamond films is reported. The experimental results show that a decrease in gate-source spacing can improve the device performance by increasing the device output current density and its transconductance. On the contrary, the gate--drain distance produces less pronounced effects on device performance. Breakdown voltage, knee voltage, and threshold voltage variations due to changes in gate-source and drain-source distances have also been investigated. The obtained results can be used as a design guideline for the layout optimization of H-terminated diamond-based MESFETs

    Spectrometric performances of monocrystalline artificial diamond detectors operated at high temperature

    Get PDF

    Measurement and modelling of anomalous polarity pulses in a multi-electrode diamond detector

    Full text link
    In multi-electrode detectors, the motion of excess carriers generated by ionizing radiation induces charge pulses at the electrodes, whose intensities and polarities depend on the geometrical, electrostatic and carriers transport properties of the device. The resulting charge sharing effects may lead to bipolar currents, pulse height defects and anomalous polarity signals affecting the response of the device to ionizing radiation. This latter effect has recently attracted attention in commonly used detector materials, but different interpretations have been suggested, depending on the material, the geometry of the device and the nature of the ionizing radiation. In this letter, we report on the investigation in the formation of anomalous polarity pulses in a multi-electrode diamond detector with buried graphitic electrodes. In particular, we propose a purely electrostatic model based on the Shockley-Ramo-Gunn theory, providing a satisfactory description of anomalous pulses observed in charge collection efficiency maps measured by means of Ion Beam Induced Charge (IBIC) microscopy, and suitable for a general application in multi-electrode devices and detectors.Comment: 8 pages, 4 figure

    Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    Get PDF
    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel
    • …
    corecore