16 research outputs found

    Lowering Low-Density Lipoprotein Particles in Plasma Using Dextran Sulphate Co-Precipitates Procoagulant Extracellular Vesicles

    Get PDF
    Plasma extracellular vesicles (EVs) are lipid membrane vesicles involved in several biological processes including coagulation. Both coagulation and lipid metabolism are strongly associated with cardiovascular events. Lowering very-low- and low-density lipoprotein ((V)LDL) particles via dextran sulphate LDL apheresis also removes coagulation proteins. It remains unknown, however, how coagulation proteins are removed in apheresis. We hypothesize that plasma EVs that contain high levels of coagulation proteins are concomitantly removed with (V)LDL particles by dextran sulphate apheresis. For this, we precipitated (V)LDL particles from human plasma with dextran sulphate and analyzed the abundance of coagulation proteins and EVs in the precipitate. Coagulation pathway proteins, as demonstrated by proteomics and a bead-based immunoassay, were over-represented in the (V)LDL precipitate. In this precipitate, both bilayer EVs and monolayer (V)LDL particles were observed by electron microscopy. Separation of EVs from (V)LDL particles using density gradient centrifugation revealed that almost all coagulation proteins were present in the EVs and not in the (V)LDL particles. These EVs also showed a strong procoagulant activity. Our study suggests that dextran sulphate used in LDL apheresis may remove procoagulant EVs concomitantly with (V)LDL particles, leading to a loss of coagulation proteins from the blood

    Clinical characteristics of subsequent histologically confirmed meningiomas in long-term childhood cancer survivors:A Dutch LATER study

    Get PDF
    Background: Meningiomas are the most frequent brain tumours occurring after pediatric cranial radiotherapy (CrRT). Data on course of disease, to inform clinical management of meningiomas, are sparse. This study reports the clinical characteristics of histologically confirmed meningiomas in childhood cancer survivors (CCS) in the Netherlands.& nbsp; Methods: In total, 6015 CCS from the Dutch Long-Term Effects After Childhood Cancer (LATER) cohort were eligible, including 1551 with prior CrRT. These CCS were diagnosed with cancer ag

    Long-term effects of adjuvant treatment for breast cancer on carotid plaques and brain perfusion

    No full text
    Purpose: Breast cancer treatment has been associated with vascular pathology. It is unclear if such treatment is also associated with long-term cerebrovascular changes. We studied the association between radiotherapy and chemotherapy with carotid pathology and brain perfusion in breast cancer survivors. Methods: We included 173 breast cancer survivors exposed to radiotherapy and chemotherapy, assessed ± 21.2 years after cancer diagnosis, and 346 age-matched cancer-free women (1:2) selected from the population-based Rotterdam Study. Outcome measures were carotid plaque score, intima-media thickness (IMT), total cerebral blood flow (tCBF), and brain perfusion. Additionally, we investigated the association between inclusion of the carotid artery in the radiation field (no/small/large part), tumor location, and these outcome measures within cancer survivors. Results: Cancer survivors had lower tCBF (− 19.6 ml/min, 95%CI − 37.3;− 1.9) and brain perfusion (− 2.5 ml/min per 100 ml, 95%CI − 4.3;− 0.7) than cancer-free women. No statistically significant group differences were observed regarding plaque score or IMT. Among cancer survivors, a large versus a small part of the carotid artery in the radiation field was associated with a higher IMT (0.05, 95%CI0.01;0.09). Also, survivors with a right-sided tumor had lower left carotid plaque score (− 0.31, 95%CI − 0.60;− 0.02) and higher brain perfusion (3.5 ml/min per 100 ml, 95%CI 0.7;6.2) than those with a left-sided tumor. Conclusions: On average two decades post-diagnosis, breast cancer survivors had lower tCBF and brain perfusion than cancer-free women. Also, survivors with a larger area of the carotid artery within the radiation field had a larger IMT. Future studies should confirm if these cerebrovascular changes underlie the frequently observed cognitive problems in cancer survivors

    Lowering low-density lipoprotein particles in plasma using dextran sulphate co-precipitates procoagulant extracellular vesicles

    No full text
    Plasma extracellular vesicles (EVs) are lipid membrane vesicles involved in several biological processes including coagulation. Both coagulation and lipid metabolism are strongly associated with cardiovascular events. Lowering very-low- and low-density lipoprotein ((V)LDL) particles via dextran sulphate LDL apheresis also removes coagulation proteins. It remains unknown, however, how coagulation proteins are removed in apheresis. We hypothesize that plasma EVs that contain high levels of coagulation proteins are concomitantly removed with (V)LDL particles by dextran sulphate apheresis. For this, we precipitated (V)LDL particles from human plasma with dextran sulphate and analyzed the abundance of coagulation proteins and EVs in the precipitate. Coagulation pathway proteins, as demonstrated by proteomics and a bead-based immunoassay, were over-represented in the (V)LDL precipitate. In this precipitate, both bilayer EVs and monolayer (V)LDL particles were observed by electron microscopy. Separation of EVs from (V)LDL particles using density gradient centrifugation revealed that almost all coagulation proteins were present in the EVs and not in the (V)LDL particles. These EVs also showed a strong procoagulant activity. Our study suggests that dextran sulphate used in LDL apheresis may remove procoagulant EVs concomitantly with (V)LDL particles, leading to a loss of coagulation proteins from the blood

    Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction

    Get PDF
    Aims The Toll-like receptor 7 (TLR7) is an intracellular innate immune receptor activated by nucleic acids shed from dying cells leading to activation of the innate immune system. Since innate immune system activation is involved in the response to myocardial infarction (MI), this study aims to identify if TLR7 is involved in post-MI ischaemic injury and adverse remodelling after MI. Methods and results TLR7 involvement in MI was investigated in human tissue from patients with ischaemic heart failure, as well as in a mouse model of permanent left anterior descending artery occlusion in C57BL/6J wild type and TLR7 deficient (TLR7(-/-)) mice. TLR7 expression was up-regulated in human and mouse ischaemic myocardium after MI. Compared to wild type mice, TLR7(-/-) mice had less acute cardiac rupture associated with blunted activation of matrix metalloproteinase 2, increased expression of tissue inhibitor of metalloproteinase 1, recruitment of more myofibroblasts, and the formation of a myocardial scar with higher collagen fibre density. Furthermore, inflammatory cell influx and inflammatory cytokine expression post-MI were reduced in the TLR7(-/-) heart. During a 28-day follow-up after MI, TLR7 deficiency resulted in less chronic adverse left ventricular remodelling and better cardiac function. Bone marrow (BM) transplantation experiments showed that TLR7 deficiency in BM-derived cells preserved cardiac function after MI. Conclusions In acute MI, TLR7 mediates the response to acute cardiac injury and chronic remodelling probably via modulation of post-MI scar formation and BM-derived inflammatory infiltration of the myocardium

    Extracellular Vesicle Proteins Associated with Systemic Vascular Events Correlate with Heart Failure : An Observational Study in a Dyspnoea Cohort

    No full text
    BACKGROUND: SerpinF2, SerpinG1, CystatinC and CD14 are involved in inflammatory processes and plasma extracellular vesicle (EV) -levels of these proteins have been reported to be associated with systemic vascular events. Evidence is accumulating that inflammatory processes may play a pivotal role both in systemic vascular events and in heart failure. Therefore, we studied the association between plasma extracellular vesicle SerpinF2-, SerpinG1-, CystatinC and CD14-levels and the occurrence of acute heart failure in patients. METHODS AND RESULT: Extracellular vesicle protein levels of SerpinG1, SerpinF2, CystatinC and CD14 were measured in an observational study of 404 subjects presenting with dysponea at the emergency department (4B-cohort). Plasma extracellular vesicles were precipitated in a total extracellular vesicles (TEX)-fraction and in separate LDL- and HDL-subfractions. Extracellular vesicle protein levels were measured with a quantitative immune assay in all 3 precipitates. Out of 404 subjects, 141 (35%) were diagnosed with acutely decompensated heart failure. After correction for confounders (including comorbidities and medications), levels of CD14 in the HDL-fraction (OR 1.53, p = 0.01), SerpinF2 in the TEX-and LDL-fraction (ORs respectively 0.71 and 0.65, p<0.05) and SerpinG1 in the TEX-fraction (OR 1.55, p = 0.004) were statistically significantly related to heart failure. Furthermore, extracellular vesicle CD14- and SerpinF2-levels were significantly higher in heart failure patients with preserved ejection fraction than in those with reduced ejection fraction. CONCLUSION: Extracellular vesicle levels of CD14, SerpinG1 and SerpinF2 are associated with the occurrence of heart failure in subjects suspected for acute heart failure, suggesting common underlying pathophysiological mechanisms for heart failure and vascular events
    corecore