1,000 research outputs found

    Revisited abundance diagnostics in quasars: Fe II/Mg II ratios

    Get PDF
    Both the Fe II UV emission in the 2000- 3000 A region [Fe II (UV)] and resonance emission line complex of Mg II at 2800 A are prominent features in quasar spectra. The observed Fe II UV/ Mg II emission ratios have been proposed as means to measure the buildup of the Fe abundance relative to that of the alpha-elements C, N, O, Ne and Mg as a function of redshift. The current observed ratios show large scatter and no obvious dependence on redshift. Thus, it remains unresolved whether a dependence on redshift exists and whether the observed Fe II UV/ Mg II ratios represent a real nucleosynthesis diagnostic. We have used our new 830-level model atom for Fe+ in photoionization calculations, reproducing the physical conditions in the broad line regions of quasars. This modeling reveals that interpretations of high values of Fe II UV/ Mg II are sensitive not only to Fe and Mg abundance, but also to other factors such as microturbulence, density, and properties of the radiation field. We find that the Fe II UV/ Mg II ratio combined with Fe II (UV)/ Fe II (Optical) emission ratio, where Fe II (Optical) denotes Fe II emission in 4000 - 6000 A can be used as a reliable nucleosynthesis diagnostic for the Fe/Mg abundance ratios for the physical conditions relevant to the broad-line regions (BLRs) of quasars. This has extreme importance for quasar observations with the Hubble Space Telescope and also with the future James Webb Space Telescope.Comment: kverner.gzip, 9 pages, f1-5.eps; aastex.cls; aastexug.sty, ApJL in pres

    Fe II Diagnostic Tools for Quasars

    Full text link
    The enrichment of Fe, relative to alpha-elements such as O and Mg, represents a potential means to determine the age of quasars and probe the galaxy formation epoch. To explore how \ion{Fe}{2} emission in quasars is linked to physical conditions and abundance, we have constructed a 830-level \ion{Fe}{2} model atom and investigated through photoionization calculations how \ion{Fe}{2} emission strengths depend on non-abundance factors. We have split \ion{Fe}{2} emission into three major wavelength bands, \ion{Fe}{2} (UV), \ion{Fe}{2}(Opt1), and \ion{Fe}{2}(Opt2), and explore how the \ion{Fe}{2}(UV)/\ion{Mg}{2}, \ion{Fe}{2}(UV)/\ion{Fe}{2}(Opt1) and \ion{Fe}{2}(UV)/\ion{Fe}{2}(Opt2) emission ratios depend upon hydrogen density and ionizing flux in broad-line regions (BLR's) of quasars. Our calculations show that: 1) similar \ion{Fe}{2}(UV)/\ion{Mg}{2} ratios can exist over a wide range of physical conditions; 2) the \ion{Fe}{2}(UV)/\ion{Fe}{2}(Opt1) and \ion{Fe}{2}(UV)/\ion{Fe}{2}(Opt2) ratios serve to constrain ionizing luminosity and hydrogen density; and 3) flux measurements of \ion{Fe}{2} bands and knowledge of ionizing flux provide tools to derive distances to BLR's in quasars. To derive all BLR physical parameters with uncertainties, comparisons of our model with observations of a large quasar sample at low redshift (z<1z<1) is desirable. The STIS and NICMOS spectrographs aboard the Hubble Space Telescope (HST) offer the best means to provide such observations.Comment: ApJ accepte

    Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions

    Get PDF
    We present a complete set of analytic fits to the non-relativistic photoionization cross sections for the ground states of atoms and ions of elements from H through Si, and S, Ar, Ca, and Fe. Near the ionization thresholds, the fits are based on the Opacity Project theoretical cross sections interpolated and smoothed over resonances. At higher energies, the fits reproduce calculated Hartree-Dirac-Slater photoionization cross sections.Comment: 24 pages including Postscript figures and tables, uses aaspp4.sty, accepted for publication in Astrophysical Journal. Misprint in Eq.(1) is correcte

    An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    Get PDF
    We present graphically the results of several thousand photoionization calculations of broad emission line clouds in quasars, spanning seven orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density - ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H)=1023cm2N(H) = 10^{23} cm^{-2}. Results are similarly given for a small subset of emission lines for two other column densities (1022cm210^{22} cm^{-2} and 1024cm210^{24} cm^{-2}), five other incident continuum shapes, and a gas metallicity of 5 \Zsun. These graphs should prove useful in the analysis of quasar emission line data and in the detailed modeling of quasar broad emission line regions. The digital results of these emission line grids and many more are available over the Internet.Comment: 16 pages, LaTeX (AASTeX aaspp4.sty); to appear in the 1997 ApJS: full contents of the 9 photoionization grids presented in this paper may be found at http://www.pa.uky.edu/~korista/grids/grids.htm

    Identification of Emission Lines in the Low-Ionization Strontium Filament Near Eta Carinae

    Full text link
    We have obtained deep spectra from 1640 to 10100A with the Space Telescope Imaging Spectrograph (STIS) of the Strontium Filament, a largely neutral emission nebulosity lying close to the very luminous star Eta Carinae and showing an uncommon spectrum. Over 600 emission lines, both permitted and forbidden, have been identified. The majority originates from neutral or singly-ionized iron group elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Sr is the only neutron capture element detected. The presence of Sr II, numerous strong Ti II and V II lines and the dominance of Fe I over Fe II are notable discoveries. While emission lines of hydrogen, helium, and nitrogen are associable with other spatial structures at other velocities within the Homunculus, no emission lines from these elements correspond to the spatial structure or velocity of the Sr Filament. Moreover, no identified Sr Filament emission line requires an ionization or excitation energy above approximately 8 eV. Ionized gas extends spatially along the aperture, oriented along the polar axis of the Homunculus, and in velocity around the Strontium Filament. We suggest that the Strontium Filament is shielded from ultraviolet radiation at energies above 8 eV, but is intensely irradiated by the central star at wavelengths longward of 1500A.Comment: 28 pages, 5 figures, 4 tables. Accepted by A&A. High resolution pictures can be found at http://www.astro.lu.se/~henrikh/srpaper/srpaper.pd

    Deposing the Cool Corona of KPD 0005+5106

    Full text link
    The ROSAT PSPC pulse height spectrum of the peculiar He-rich hot white dwarf KPD 0005+5106 provided a great surprise when first analysed by Fleming, Werner & Barstow (1993). It defied the best non-LTE modelling attempts in terms of photospheric emission from He-dominated atmospheres including C, N and O and was instead interpreted as the first evidence for a coronal plasma around a white dwarf. We show here that a recent high resolution Chandra LETGS spectrum has more structure than expected from a thermal bremsstrahlung continuum and lacks the narrow lines of H-like and He-like C expected from a coronal plasma. Moreover, a coronal model requires a total luminosity more than two orders of magnitude larger than that of the star itself. Instead, the observed 20-80 AA flux is consistent with photospheric models containing trace amounts of heavier elements such as Fe. The soft X-ray flux is highly sensitive to the adopted metal abundance and provides a metal abundance diagnostic. The weak X-ray emission at 1 keV announced by O'Dwyer et al (2003) instead cannot arise from the photosphere and requires alternative explanations. We echo earlier speculation that such emission arises in a shocked wind. Despite the presence of UV-optical O VIII lines from transitions between levels n=7-10, no X-ray O VIII Ly alpha flux is detected. We show that O VIII Lyman photons can be trapped by resonant scattering within the emitting plasma and destroyed by photoelectric absorption.Comment: 15 Pages, 4 figures. Accepted for the Astrophysical Journa

    Numerical Simulations of Fe II Emission Spectra

    Get PDF
    This paper describes the techniques that we have used to incorporate a large-scale model of the Fe+ ion and resulting Fe IIemission into CLOUDY, a spectral synthesis code designed to simulate conditions within a plasma and model the resulting spectrum. We describe the numerical methods we use to determine the level populations, mutual line overlap fluorescence, collisional effects, and the heating-cooling effects of the atom on its environment. As currently implemented, the atom includes the lowest 371 levels (up to 11.6 eV) and predicts intensities of 68,635 lines. We describe our data sources, which include the most recent transition probabilities and collision strengths. Although we use detailed fits to temperature-dependent collision strengths where possible, in many cases the uncertain g approximation is the only source for collision data. The atom is designed to be readily expanded to include more levels and to incorporate more accurate sets of collision and radiative data as computers grow faster and the atomic databases expand. We present several test cases showing that the atom goes to LTE in the limits of high particle and radiation densities. We give an overview of general features of the Fe II spectra as their dependencies on the basic parameters of our models (density, flux, microturbulent velocity, the Fe abundance, and Lyα pumping). Finally, we discuss several applications to active galactic nuclei to illustrate the diagnostic power of the Fe II spectrum and make some predictions for UV observations
    corecore