Both the Fe II UV emission in the 2000- 3000 A region [Fe II (UV)] and
resonance emission line complex of Mg II at 2800 A are prominent features in
quasar spectra. The observed Fe II UV/ Mg II emission ratios have been proposed
as means to measure the buildup of the Fe abundance relative to that of the
alpha-elements C, N, O, Ne and Mg as a function of redshift. The current
observed ratios show large scatter and no obvious dependence on redshift. Thus,
it remains unresolved whether a dependence on redshift exists and whether the
observed Fe II UV/ Mg II ratios represent a real nucleosynthesis diagnostic. We
have used our new 830-level model atom for Fe+ in photoionization calculations,
reproducing the physical conditions in the broad line regions of quasars. This
modeling reveals that interpretations of high values of Fe II UV/ Mg II are
sensitive not only to Fe and Mg abundance, but also to other factors such as
microturbulence, density, and properties of the radiation field. We find that
the Fe II UV/ Mg II ratio combined with Fe II (UV)/ Fe II (Optical) emission
ratio, where Fe II (Optical) denotes Fe II emission in 4000 - 6000 A can be
used as a reliable nucleosynthesis diagnostic for the Fe/Mg abundance ratios
for the physical conditions relevant to the broad-line regions (BLRs) of
quasars. This has extreme importance for quasar observations with the Hubble
Space Telescope and also with the future James Webb Space Telescope.Comment: kverner.gzip, 9 pages, f1-5.eps; aastex.cls; aastexug.sty, ApJL in
pres