197 research outputs found

    Bioactive glasses with low Ca/P ratio and enhanced bioactivity

    Get PDF
    Three new silica-based glass formulations with low molar Ca/P ratio (2–3) have been synthesized. The thermal properties, the crystalline phases induced by thermal treatments and the sintering ability of each glass formulation have been investigated by simultaneous differential scanning calorimetry-thermogravimetric analysis (DSC-TG), X-ray diffraction (XRD) and hot stage microscopy (HSM). The glasses exhibited a good sintering behavior, with two samples achieving shrinkage of 85%–95% prior to crystallization. The bioactivity of the glasses in simulated body fluid (SBF) has been investigated by performing XRD and Fourier transform infrared spectroscopy (FTIR) on the samples prior and after immersion. The glasses with lower MgO contents were able to form a fully crystallized apatite layer after three days of immersion in simulated body fluid (SBF), while for the glass exhibiting a higher MgO content in its composition, the crystallization of the Ca–P layer was achieved after seven days. The conjugation of these properties opens new insights on the synthesis of highly bioactive and mechanically strong prosthetic materials

    Synthesis and characterization of magnetic and antibacterial nanoparticles as filler in acrylic cements for bone cancer and comorbidities therapy

    Get PDF
    In this work an innovative formulation of bone cement for the treatment of bone tumor and its associated complications has been designed by preparing a new class of Fe3O4–Ag nanostructures, using gallic acid as a reducing agent. The obtained nanoparticles have been introduced in polymethyl methacrylate (PMMA)-based composite cement evaluating the insertion of different amounts and the use of different mixing methods. The morphology, the composition and the antibacterial effect of Fe3O4–Ag nanostructures have been investigated together with the morphology, the composition, the mechanical properties of the nanoparticles-containing composite cements as well as their antibacterial effect. The obtained results revealed a good antimicrobial effect of Fe3O4–Ag nanostructures, a significant influence of their amount and of the used mixing method on the particles dispersion and agglomeration in the PMMA matrix and, as a result, on the mechanical properties. In particular, a better dispersion of nanoparticles was obtained by using the mechanical mixing, reducing the tendency to agglomerate. The increase of nanoparticles amount induced a slight decrease of the mechanical properties; however, the introduction of 10% w/w of Fe3O4–Ag allowed to improve the composites ability to reduce the bacteria adhesion

    Surface Functionalisation of biomaterials with alkaline phosphatase

    Get PDF
    Two different glasses, one biocompatible but with a low bioactivity index (G1) and the other with an higher bioactivity index (G2), the ceramic version of the second glass and a titanium alloy (Ti6Al4V) have been functionalizated by anchoring alkaline phosphatase (ALP) on their surfaces. The enzyme has been chosen because it is involved in mineralization processes of hard tissues and is a model for more complex ones. ALP has been grafted on glasses and glass-ceramics surfaces both with and without samples silanization and on metallic surfaces with and without tresyl chloride activation. Samples have been analyzed at each step of the functionalization process in order to verify i

    Tumor targeting by monoclonal antibody functionalized magnetic nanoparticles

    Get PDF
    Tumor-targeted drug-loaded nanocarriers represent innovative and attractive tools for cancer therapy. Several magnetic nanoparticles (MNPs) were analyzed as potential tumor-targeted drug-loaded nanocarriers after functionalization with anti-Met oncogene (anti-Met/HGFR) monoclonal antibody (mAb) and doxorubicin (DOXO). Their cytocompatibility, stability, immunocompetence (immunoprecipitation), and their interactions with cancer cells in vitro (Perl's staining, confocal microscopy, cytotoxic assays: MTT, real time toxicity) and with tumors in vivo (Perl's staining) were evaluated. The simplest silica- and calcium-free mAb-loaded MNPs were the most cytocompatible, the most stable, and showed the best immunocompetence and specificity. These mAb-functionalized MNPs specifically interacted with the surface of Met/HGFR-positive cells, and not with Met/HGFR-negative cells; they were not internalized, but they discharged in the targeted cells DOXO, which reached the nucleus, exerting cytotoxicity. The presence of mAbs on DOXO-MNPs significantly increased their cytotoxicity on Met/HGFR-positive cells, while no such effect was detectable on Met/HGFR-negative cells. Bare MNPs were biocompatible in vivo; mAb presence on MNPs induced a better dispersion within the tumor mass when injected in situ in Met/HGFR-positive xenotumors in NOD/SCID-γnull mice. These MNPs may represent a new and promising carrier for in vivo targeted drug delivery, in which applied gradient and alternating magnetic fields can enhance targeting and induce hyperthermia respectively
    • …
    corecore