50 research outputs found

    Antimicrobial Agents for Textiles: Types, Mechanisms and Analysis Standards

    Get PDF
    The large surface area, and ability to retain moisture of textile structures enable microorganisms’ growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Moreover, textiles used in health care environments are required to possess antimicrobial property to minimize spread of pathogenic infection. Anti-microbial property can be imparted via chemical finishing with an antimicrobial agent. Currently the use of antimicrobial agents includes metal compounds (notably copper and silver particle), chitosan, halogenated phenols “triclosan”, quaternary ammonium compounds, antibiotics (a class of antimicrobials produced from microorganisms that act against one another), and N-halamines. The possibility of bacterial resistance limits antibiotic use to specific medical applications, and triclosan is known for being dangerous to the environment and is currently under scrutiny for possible endocrine disrupting to human being. Although quaternary ammonium compounds are stable and easily manufactured, microbial resistance is also a concern. Quaternary ammonium compounds (QACs), Polyhexamethylene Biguanide (PHMB), chitosan and N-halamines are listed under bound or non-leaching type antimicrobials. The bulk of current chapter focuses on the different family of antimicrobial agents used for textiles and their mechanisms

    The Belgian trial with azithromycin for acute COPD exacerbations requiring hospitalization: an investigator-initiated study protocol for a multicenter, randomized, double-blind, placebo-controlled trial

    Get PDF
    Background: Long-term use of macrolide antibiotics is effective to prevent exacerbations in chronic obstructive pulmonary disease (COPD). As risks and side effects of long-term intervention outweigh the benefits in the general COPD population, the optimal dose, duration of treatment, and target population are yet to be defined. Hospitalization for an acute exacerbation (AE) of COPD may offer a targeted risk group and an obvious risk period for studying macrolide interventions. Methods/design: Patients with COPD, hospitalized for an AE, who have a smoking history of > 10 pack-years and had > 1 exacerbation in the previous year will be enrolled in a multicenter, randomized, double-blind, placebo-controlled trial (NCT02135354). On top of a standardized treatment of systemic corticosteroids and antibiotics, subjects will be randomized to receive either azithromycin or placebo during 3 months, at an uploading dose of 500 mg once a day for 3 days, followed by a maintenance dose of 250 mg once every 2 days. The primary endpoint is the time-to-treatment failure during the treatment phase (ie, from the moment of randomization until the end of intervention). Treatment failure is a novel composite endpoint defined as either death, the admission to intensive care or the requirement of additional systemic steroids or new antibiotics for respiratory reasons, or the diagnosis of a new AE after discharge. Discussion: We investigate whether azithromycin initiated at the onset of a severe exacerbation, with a limited duration and at a low dose, might be effective and safe in the highest risk period during and immediately after the acute event. If proven effective and safe, this targeted approach may improve the treatment of severe AEs and redirect the preventive use of azithromycin in COPD to a temporary intervention in the subgroup with the highest unmet needs

    Oxygenated machine perfusion at room temperature as an alternative for static cold storage in porcine donor hearts

    Get PDF
    Background There is a continued interest in ex situ heart perfusion as an alternative strategy for donor heart preservation. We hypothesize that oxygenated machine perfusion of donor hearts at a temperature that avoids both normothermia and deep hypothermia offers adequate and safe preservation. Methods Cardioplegia-arrested porcine donor hearts were randomly assigned to six hours of preservation using cold storage (CS, n = 5) or machine perfusion using an oxygenated acellular perfusate at 21 degrees C (MP, n = 5). Subsequently, all grafts were evaluated using the Langendorff method for 120 min. Metabolic parameters and histology were analyzed. Systolic function was assessed by contractility and elastance. Diastolic function was assessed by lusitropy and stiffness. Results For both groups, in vivo baseline and post-Langendorff biopsies were comparable, as were lactate difference and myocardial oxygen consumption. Injury markers gradually increased and were comparable. Significant weight gain was seen in MP (p = 0.008). Diastolic function was not impaired in MP, and lusitropy was superior from 30 min up to 90 min of reperfusion. Contractility was superior in MP during the first hour of evaluation. Conclusion We conclude that the initial functional outcome of MP-preserved hearts was transiently superior compared to CS, with no histological injury post-Langendorff. Our machine perfusion strategy could offer feasible and safe storage of hearts prior to transplantation. Future studies are warranted for further optimization

    Oxygenated machine perfusion at room temperature as an alternative for static cold storage in porcine donor hearts

    Get PDF
    Background There is a continued interest in ex situ heart perfusion as an alternative strategy for donor heart preservation. We hypothesize that oxygenated machine perfusion of donor hearts at a temperature that avoids both normothermia and deep hypothermia offers adequate and safe preservation. Methods Cardioplegia-arrested porcine donor hearts were randomly assigned to six hours of preservation using cold storage (CS, n = 5) or machine perfusion using an oxygenated acellular perfusate at 21 degrees C (MP, n = 5). Subsequently, all grafts were evaluated using the Langendorff method for 120 min. Metabolic parameters and histology were analyzed. Systolic function was assessed by contractility and elastance. Diastolic function was assessed by lusitropy and stiffness. Results For both groups, in vivo baseline and post-Langendorff biopsies were comparable, as were lactate difference and myocardial oxygen consumption. Injury markers gradually increased and were comparable. Significant weight gain was seen in MP (p = 0.008). Diastolic function was not impaired in MP, and lusitropy was superior from 30 min up to 90 min of reperfusion. Contractility was superior in MP during the first hour of evaluation. Conclusion We conclude that the initial functional outcome of MP-preserved hearts was transiently superior compared to CS, with no histological injury post-Langendorff. Our machine perfusion strategy could offer feasible and safe storage of hearts prior to transplantation. Future studies are warranted for further optimization.</p

    Effect of Trans-Nasal Evaporative Intra-arrest Cooling on Functional Neurologic Outcome in Out-of-Hospital Cardiac Arrest : The PRINCESS Randomized Clinical Trial

    Get PDF
    © 2019 American Medical Association. All rights reserved.Importance: Therapeutic hypothermia may increase survival with good neurologic outcome after cardiac arrest. Trans-nasal evaporative cooling is a method used to induce cooling, primarily of the brain, during cardiopulmonary resuscitation (ie, intra-arrest). Objective: To determine whether prehospital trans-nasal evaporative intra-arrest cooling improves survival with good neurologic outcome compared with cooling initiated after hospital arrival. Design, Setting, and Participants: The PRINCESS trial was an investigator-initiated, randomized, clinical, international multicenter study with blinded assessment of the outcome, performed by emergency medical services in 7 European countries from July 2010 to January 2018, with final follow-up on April 29, 2018. In total, 677 patients with bystander-witnessed out-of-hospital cardiac arrest were enrolled. Interventions: Patients were randomly assigned to receive trans-nasal evaporative intra-arrest cooling (n = 343) or standard care (n = 334). Patients admitted to the hospital in both groups received systemic therapeutic hypothermia at 32°C to 34°C for 24 hours. Main Outcomes and Measures: The primary outcome was survival with good neurologic outcome, defined as Cerebral Performance Category (CPC) 1-2, at 90 days. Secondary outcomes were survival at 90 days and time to reach core body temperature less than 34°C. Results: Among the 677 randomized patients (median age, 65 years; 172 [25%] women), 671 completed the trial. Median time to core temperature less than 34°C was 105 minutes in the intervention group vs 182 minutes in the control group (P < .001). The number of patients with CPC 1-2 at 90 days was 56 of 337 (16.6%) in the intervention cooling group vs 45 of 334 (13.5%) in the control group (difference, 3.1% [95% CI, -2.3% to 8.5%]; relative risk [RR], 1.23 [95% CI, 0.86-1.72]; P = .25). In the intervention group, 60 of 337 patients (17.8%) were alive at 90 days vs 52 of 334 (15.6%) in the control group (difference, 2.2% [95% CI, -3.4% to 7.9%]; RR, 1.14 [95% CI, 0.81-1.57]; P = .44). Minor nosebleed was the most common device-related adverse event, reported in 45 of 337 patients (13%) in the intervention group. The adverse event rate within 7 days was similar between groups. Conclusions and Relevance: Among patients with out-of-hospital cardiac arrest, trans-nasal evaporative intra-arrest cooling compared with usual care did not result in a statistically significant improvement in survival with good neurologic outcome at 90 days. Trial Registration: ClinicalTrials.gov Identifier: NCT01400373.Peer reviewedFinal Accepted Versio

    Treatment failure and hospital readmissions in severe COPD exacerbations treated with azithromycin versus placebo - A post-hoc analysis of the BACE randomized controlled trial

    Get PDF
    Background: In the BACE trial, a 3-month (3 m) intervention with azithromycin, initiated at the onset of an infectious COPD exacerbation requiring hospitalization, decreased the rate of a first treatment failure (TF); the composite of treatment intensification (TI), step-up in hospital care (SH) and mortality. Objectives: (1) To investigate the intervention's effect on recurrent events, and (2) to identify clinical subgroups most likely to benefit, determined from the incidence rate of TF and hospital readmissions. Methods: Enrolment criteria included the diagnosis of COPD, a smoking history of ≥10 pack-years and ≥ 1 exacerbation in the previous year. Rate ratio (RR) calculations, subgroup analyses and modelling of continuous variables using splines were based on a Poisson regression model, adjusted for exposure time. Results: Azithromycin significantly reduced TF by 24% within 3 m (RR = 0.76, 95%CI:0.59;0.97, p = 0.031) through a 50% reduction in SH (RR = 0.50, 95%CI:0.30;0.81, p = 0.006), which comprised of a 53% reduction in hospital readmissions (RR = 0.47, 95%CI:0.27;0.80; p = 0.007). A significant interaction between the intervention, CRP and blood eosinophil count at hospital admission was found, with azithromycin significantly reducing hospital readmissions in patients with high CRP (> 50 mg/L, RR = 0.18, 95%CI:0.05;0.60, p = 0.005), or low blood eosinophil count (<300cells/μL, RR = 0.33, 95%CI:0.17;0.64, p = 0.001). No differences were observed in treatment response by age, FEV1, CRP or blood eosinophil count in continuous analyses. Conclusions: This post-hoc analysis of the BACE trial shows that azithromycin initiated at the onset of an infectious COPD exacerbation requiring hospitalization reduces the incidence rate of TF within 3 m by preventing hospital readmissions. In patients with high CRP or low blood eosinophil count at admission this treatment effect was more pronounced, suggesting a potential role for these biomarkers in guiding azithromycin therapy. Trial registration: ClinicalTrials.gov number. NCT02135354. © 2019 The Author(s)

    Belgian rare diseases plan in clinical pathology : identification of key biochemical diagnostic tests and establishment of reference laboratories and financing conditions

    Get PDF
    BackgroundOne objective of the Belgian Rare Diseases plan is to improve patients' management using phenotypic tests and, more specifically, the access to those tests by identifying the biochemical analyses used for rare diseases, developing new financing conditions and establishing reference laboratories.MethodsA feasibility study was performed from May 2015 until August 2016 in order to select the financeable biochemical analyses, and, among them, those that should be performed by reference laboratories. This selection was based on an inventory of analyses used for rare diseases and a survey addressed to the Belgian laboratories of clinical pathology (investigating the annual analytical costs, volumes, turnaround times and the tests unavailable in Belgium and outsourced abroad). A proposal of financeable analyses, financing modalities, reference laboratories' scope and budget estimation was developed and submitted to the Belgian healthcare authorities. After its approval in December 2016, the implementation phase took place from January 2017 until December 2019.ResultsIn 2019, new reimbursement conditions have been published for 46 analyses and eighteen reference laboratories have been recognized. Collaborations have also been developed with 5 foreign laboratories in order to organize the outsourcing and financing of 9 analyses unavailable in Belgium.ConclusionsIn the context of clinical pathology and rare diseases, this initiative enabled to identify unreimbursed analyses and to meet the most crucial financial needs. It also contributed to improve patients' management by establishing Belgian reference laboratories and foreign referral laboratories for highly-specific analyses and a permanent surveillance, quality and financing framework for those tests
    corecore