22 research outputs found

    Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    Get PDF
    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols

    Impact of isocaloric exchanges of carbohydrate for fat on postprandial glucose, insulin, triglycerides, and free fatty acid responses-a systematic review and meta-analysis

    Get PDF
    Varying the macronutrient composition of meals alters acute postprandial responses, but the effect sizes for specific macronutrient exchanges have not been quantified by systematic reviews. Therefore the aim is to quantify the effect size of exchanging fat for carbohydrates in mixed meals on postprandial glucose (PPG), insulin (PPI), triglycerides (PPTG), and free fatty acids (PPFFA) responses by performing a systematic review and meta-analysis of randomized controlled trials. A systematic literature search was undertaken on randomized controlled trials comparing isocaloric high fat with high carbohydrate meals, with comparable protein contents and at least one postprandial glycemic- and one lipid outcome. The outcome data were extracted and expressed as mean postprandial levels over 2 h. Ten studies involving 14 comparisons met the eligibility criteria. Data were available for meta-analysis from 347 participants, consuming mixed meals containing 250-1003 kcal, and total fat contents of 33.3-75.6 percentage of energy (en%) (intervention) versus 0-31.7 en% (control). Each 10en% increase in fat, replacing carbohydrates produced a mean reduction in PPG of 0.32 mmol/l (95% CI -0.64 to -0.00, p = 0.047), a reduction in PPI of 18.2 pmol/l (95% CI -24.86 to -11.54), an increase in PPTG of 0.06 mmol/l (95% CI 0.02 to 0.09, p = 0.004), with no statistically significant effect on PPFFA. Modest exchange of carbohydrates for fats in mixed meals significantly reduces PPG and PPI and increases PPTG responses. The quantitative relationships derived here may be applied to predict responses, and to design and optimize meal macronutrient compositions in dietary intervention studies

    Herpes Simplex Virus Type 1 Infection Facilitates Invasion of Staphylococcus aureus into the Nasal Mucosa and Nasal Polyp Tissue

    Get PDF
    Background: Staphylococcus aureus (S. aureus) plays an important role in the pathogenesis of severe chronic airway disease, such as nasal polyps. However the mechanisms underlying the initiation of damage and/or invasion of the nasal mucosa by S. aureus are not clearly understood. The aim of this study was to investigate the interaction between S. aureus and herpes simplex virus type 1 (HSV1) in the invasion of the nasal mucosa and nasal polyp tissue. Methodology/Principal Findings: Inferior turbinate and nasal polyp samples were cultured and infected with either HSV1 alone, S. aureus alone or a combination of both. Both in turbinate mucosa and nasal polyp tissue, HSV1, with or without S. aureus incubation, led to focal infection of outer epithelial cells within 48 h, and loss or damage of the epithelium and invasion of HSV1 into the lamina propria within 72 h. After pre-infection with HSV1 for 24 h or 48 h, S. aureus was able to pass the basement membrane and invade the mucosa. Epithelial damage scores were significantly higher for HSV1 and S. aureus co-infected explants compared with control explants or S. aureus only-infected explants, and significantly correlated with HSV1-invasion scores. The epithelial damage scores of nasal polyp tissues were significantly higher than those of inferior turbinate tissues upon HSV1 infection. Consequently, invasion scores of HSV1 of nasal polyp tissues were significantly higher than those of inferior turbinate mucosa in the HSV1 and co-infection groups, and invasion scores of S. aureus of nasal polyp tissues were significantly higher than those of inferior turbinate tissues in the co-infection group. Conclusions/Significance: HSV1 may lead to a significant damage of the nasal epithelium and consequently may facilitate invasion of S. aureus into the nasal mucosa. Nasal polyp tissue is more susceptible to the invasion of HSV1 and epithelial damage by HSV1 compared with inferior turbinate mucosa

    LDL-Cholesterol Lowering of Plant Sterols and Stanols—Which Factors Influence Their Efficacy?

    No full text
    The LDL-cholesterol (LDL-C) lowering effect of plant sterols/stanols (PSS) is summarized in several meta-analyses showing a dose-response relationship with intakes of 1.5 to 3 g/day lowering LDL-C by 7.5% to 12%. This review summarizes evidence for the impact of various factors potentially influencing the LDL-C-lowering efficacy of PSS. PSS are efficacious in all food formats and in food supplements. Some factors related to food format, e.g., solid vs. liquid foods, seem to impact efficacy, while there is no difference between free PSS and esters. Compared to multiple daily intakes, once-a-day intake of PSS, especially in the morning with light breakfast, leads to a sub-optimal LDL-C lowering. However, intake frequency seems influenced by intake occasion, i.e., with or without a meal, and time of day. Meal intake is a critical factor for an optimal LDL-C lowering efficacy of PSS. While age has no impact, gender is suggested to influence the LDL-C lowering effect of PSS with greater reductions reported for men than women; but overall evidence is inconclusive and larger studies show no gender by treatment interaction. In conclusion, PSS are efficacious in all foods and food supplements; for optimal efficacy they should be consumed with a (main) meal and twice daily
    corecore