61 research outputs found
Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver. A preliminary feasibility demonstration
It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves
Dayside Ionospheric Superfountain
The Dayside Ionospheric Super-fountain modified SAMI2 code predicts the uplift, given storm-time electric fields, of the dayside near-equatorial ionosphere to heights of over 800 kilometers during magnetic storm intervals. This software is a simple 2D code developed over many years at the Naval Research Laboratory, and has importance relating to accuracy of GPS positioning, and for satellite drag
Shock Geometry and Spectral Breaks in Large SEP Events
Solar energetic particle (SEP) events are traditionally classified as "impulsive" or "gradual." It is now widely accepted that in gradual SEP events, particles are accelerated at coronal mass ejection-driven (CME-driven) shocks. In many of these large SEP events, particle spectra exhibit double power law or exponential rollover features, with the break energy or rollover energy ordered as (Q/A)^α, with Q being the ion charge in e and A the ion mass in units of proton mass m_p . This Q/A dependence of the spectral breaks provides an opportunity to study the underlying acceleration mechanism. In this paper, we examine how the Q/A dependence may depend on shock geometry. Using the nonlinear guiding center theory, we show that α ~ 1/5 for a quasi-perpendicular shock. Such a weak Q/A dependence is in contrast to the quasi-parallel shock case where α can reach 2. This difference in α reflects the difference of the underlying parallel and perpendicular diffusion coefficients κ_(||) and κ ⊥. We also examine the Q/A dependence of the break energy for the most general oblique shock case. Our analysis offers a possible way to remotely examine the geometry of a CME-driven shock when it is close to the Sun, where the acceleration of particle to high energies occurs
Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME
Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software
Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms
Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher)
Advantages of geostationary satellites for Ionospheric anomaly studies. Ionospheric plasma depletion following a rocket launch
In this study, we analyzed signals transmitted by the U.S. Wide Area Augmentation System (WAAS) geostationary (GEO) satellites using the Variometric Approach for Real-Time Ionosphere Observation (VARION) algorithm in a simulated real-time scenario, to characterize the ionospheric response to the 24 August 2017 Falcon 9 rocket launch from Vandenberg Air Force Base in California. VARION is a real-time Global Navigation Satellites Systems (GNSS)-based algorithm that can be used to detect various ionospheric disturbances associated with natural hazards, such as tsunamis and earthquakes. A noise reduction algorithm was applied to the VARION-GEO solutions to remove the satellite-dependent noise term. Our analysis showed that the interactions of the exhaust plume with the ionospheric plasma depleted the total electron content (TEC) to a level comparable with nighttime TEC values. During this event, the geometry of the satellite-receiver link is such that GEO satellites measured the depleted plasma hole before any GPS satellites. We estimated that the ionosphere relaxed back to a pre-perturbed state after about 3 h, and the hole propagated with a mean speed of about 600 m/s over a region of 700 km in radius. We conclude that the VARION-GEO approach can provide important ionospheric TEC real-time measurements, which are not affected by the motion of the ionospheric pierce points (IPPs). Furthermore, the VARION-GEO measurements experience a steady noise level throughout the entire observation period, making this technique particularly useful to augment and enhance the capabilities of well-established GNSS-based ionosphere remote sensing techniques and future ionospheric-based early warning system
Scale dependent alignment between velocity and magnetic field fluctuations in the solar wind and comparisons to Boldyrev's phenomenological theory
(Abridged abstract) A theory of incompressible MHD turbulence recently
developed by Boldyrev predicts the existence of a scale dependent angle of
alignment between velocity and magnetic field fluctuations that is proportional
to the lengthscale of the fluctuations to the power 1/4. In this study, plasma
and magnetic field data from the Wind spacecraft are used to investigate the
angle between velocity and magnetic field fluctuations in the solar wind as a
function of the timescale of the fluctuations and to look for the power law
scaling predicted by Boldyrev.Comment: Particle Acceleration and Transport in the Heliosphere and Beyond,
7th Annual International Astrophysics Conference, Kauai, Hawaii, G. Li, Q.
Hu, O. Verkhoglyadova, G. P. Zank, R. P. Lin, J. Luhmann (eds), AIP
Conference Proceedings 1039, 81-8
Thermosphereâ Ionosphere Modeling With Forecastable Inputs: Case Study of the June 2012 Highâ Speed Stream Geomagnetic Storm
Forecasting conditions in the thermosphere and ionosphere is a key outcome expected from space weather research. In this work, we perform numerical simulations using the firstâ principles models Global Ionosphereâ Thermosphere Model (GITM) and Thermosphereâ Ionosphere Electrodynamics General Circulation Model (TIEâ GCM) to address the reliability of thermosphericâ ionospheric forecasts. When considering forecasts applicable to periods of geomagnetic activity, careful consideration is required of model inputs, which largely determine how the models will simulate disturbed conditions. We adopt an approach to drive the models with solar wind parameters and the 10.7Â cm solar radio flux. This aligns our investigation with recent research and operational activities to forecast solar wind conditions on the Earth a few days in advance. In this work, we examine a weak geomagnetic storm, the June 2012 highâ speedâ stream event, for which we drive GITM and TIEâ GCM with observed solar wind and F10.7 values. We find general agreement between the simulations and observationâ based Global Ionospheric Maps of the total electron content (TEC) response. However, overestimated TEC response is found in the middle to low latitudinal region of the American sector and surrounding areas for both GITM and TIEâ GCM during similar time periods. By conducting numerical modeling experiments and comparing the modeling results with observational data, we find that the overestimated TEC response can be almost equally attributed to the solar wind driving and F10.7 driving during the June 2012 event. We conclude that the accuracy of the highâ latitude electric field and the solar irradiance is crucial to reproduce the TEC response in forecastableâ mode modeling.Key PointsForecastable global thermosphereâ ionosphere modeling is carried out for a weak geomagnetic stormThe modeled daytime middleâ to lowâ latitude TEC response is primarily driven by the solar wind condition on the first day of the stormOn later days of the storm the solar irradiance plays a comparable role as the solar wind in determining the modeled daytime TEC responsePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153689/1/swe20952_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153689/2/swe20952.pd
Anomalous cosmic rays in the heliosheath
We report on Voyager 1 and 2 observations of anomalous cosmic rays in the outer heliosphere. The energy spectrum of anomalous cosmic ray helium as each spacecraft crossed the solar wind termination shock into the heliosheath remained modulated. Assuming the intensity gradient between the two spacecraft is purely radial, we find that radial gradients in the heliosheath of He with 11.6–22.3 MeV/nuc and with ∼61–73MeV/nuc∼61–73 MeV/nuc are 4.9±1.2%/AU4.9±1.2%/AU and 0.0±0.5%/AU,0.0±0.5%/AU, respectively. Strong temporal variations of the 11.6–22.3 MeV/nuc He intensity at both spacecraft were observed in 2005 just after Voyager 1 crossed the termination shock and while Voyager 2 was upstream. After 2006.0, the intensity variations are more moderate and likely due to a combination of spatial and temporal variations. As of early 2008, the anomalous cosmic ray He energy spectrum has unfolded to what may be a source spectrum. The spectrum at Voyager 2 remains modulated. We examine three recent models of the origin of anomalous cosmic rays in light of these observations
- …