2,266 research outputs found

    Float zone experiments in space

    Get PDF
    The molten zone/freezing crystal interface system and all the mechanisms were examined. If Marangoni convection produces oscillatory flows in the float zone of semiconductor materials, such as silicon, then it is unlikely that superior quality crystals can be grown in space using this process. The major goals were: (1) to determine the conditions for the onset of Marangoni flows in molten tin, a model system for low Prandtl number molten semiconductor materials; (2) to determine whether the flows can be suppressed by a thin oxide layer; and (3) based on experimental and mathematical analysis, to predict whether oscillatory flows will occur in the float zone silicon geometry in space, and if so, could it be suppressed by thin oxide or nitride films. Techniques were developed to analyze molten tin surfaces in a UHV system in a disk float zone geometry to minimize buoyancy flows. The critical Marangoni number for onset of oscillatory flows was determined to be greater than 4300 on atomically clean molten tin surfaces

    High quality ultrafast transmission electron microscopy using resonant microwave cavities

    Get PDF
    Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM110_{110} deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814±2814\pm2 pA, the root-mean-square transverse normalized emittance of the electron pulses is εn,x=(2.7±0.1)⋅10−12\varepsilon_{n,x}=(2.7\pm0.1)\cdot 10^{-12} m rad in the direction parallel to the streak of the cavity, and εn,y=(2.5±0.1)⋅10−12\varepsilon_{n,y}=(2.5\pm0.1)\cdot 10^{-12} m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is εn,x=εn,y=(2.5±0.1)⋅10−12\varepsilon_{n,x}=\varepsilon_{n,y}=(2.5\pm0.1)\cdot 10^{-12} m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95±0.050.95\pm0.05 eV has been measured

    Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110_{110} mode for ultrafast electron microscopy

    Full text link
    We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM110_{110} mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures

    Overview of the author identification task at PAN 2014

    Get PDF
    The author identification task at PAN-2014 focuses on author verification. Similar to PAN-2013 we are given a set of documents by the same author along with exactly one document of questioned authorship, and the task is to determine whether the known and the questioned documents are by the same author or not. In comparison to PAN-2013, a significantly larger corpus was built comprising hundreds of documents in four natural languages (Dutch, English, Greek, and Spanish) and four genres (essays, reviews, novels, opinion articles). In addition, more suitable performance measures are used focusing on the accuracy and the confidence of the predictions as well as the ability of the submitted methods to leave some problems unanswered in case there is great uncertainty. To this end, we adopt the c@1 measure, originally proposed for the question answering task. We received 13 software submissions that were evaluated in the TIRA framework. Analytical evaluation results are presented where one language-independent approach serves as a challenging baseline. Moreover, we continue the successful practice of the PAN labs to examine meta-models based on the combination of all submitted systems. Last but not least, we provide statistical significance tests to demonstrate the important differences between the submitted approaches

    Design and characterization of dielectric filled TM110_{110} microwave cavities for ultrafast electron microscopy

    Get PDF
    Microwave cavities oscillating in the TM110_{110} mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material, and to reproducibly fabricate dielectric filled cavities. Also presented are two versions with improved capabilities. The first, called a dual-mode cavity, is designed to support two modes simultaneously. The second has been optimized for low power consumption. With this optimized cavity a magnetic field strength of 2.84 ±\pm 0.07 mT was generated at an input power of 14.2 ±\pm 0.2 W. Due to the low input powers and small dimensions, these dielectric cavities are ideal as electron-optical elements for electron microscopy setups

    UvA-DARE (Digital Academic Repository) Reversible Charge Migration in the Excited State of an Electron Donor-Donor-Acceptor System Detected via Delayed Charge Transfer Fluorescence

    Get PDF
    Reversible charge migration in the excited state of an electron Donor-Donor-Acceptor system detected via delayed charge transfer fluorescence Willemse, R.J.; Verhoeven, J.W.; Brouwer, A.M. Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible

    Dual mode microwave deflection cavities for ultrafast electron microscopy

    Get PDF
    This paper presents the experimental realization of an ultrafast electron microscope operating at a repetition rate of 75 MHz based on a single compact resonant microwave cavity operating in dual mode. This elliptical cavity supports two orthogonal TM110_{110} modes with different resonance frequencies that are driven independently. The microwave signals used to drive the two cavity modes are generated from higher harmonics of the same Ti:Sapphire laser oscillator. Therefore the modes are accurately phase-locked, resulting in periodic transverse deflection of electrons described by a Lissajous pattern. By sending the periodically deflected beam through an aperture, ultrashort electron pulses are created at a repetition rate of 75 MHz. Electron pulses with τ=(750±10)\tau=(750\pm10) fs pulse duration are created with only (2.4±0.1)(2.4\pm0.1) W of microwave input power; with normalized rms emittances of ϵn,x=(2.1±0.2)\epsilon_{n,x}=(2.1\pm0.2) pm rad and ϵn,y=(1.3±0.2)\epsilon_{n,y}=(1.3\pm0.2) pm rad for a peak current of Ip=(0.4±0.1)I_p=(0.4\pm0.1) nA. This corresponds to an rms normalized peak brightness of Bnp,rms=(7±1)×106B_{np,\textrm{rms}}=(7\pm1)\times10^6 A/m2^2 sr V, equal to previous measurements for the continuous beam. In addition, the FWHM energy spread of ΔU=(0.90±0.05)\Delta U = (0.90\pm0.05) eV is also unaffected by the dual mode cavity. This allows for ultrafast pump-probe experiments at the same spatial resolution of the original TEM in which a 75 MHz Ti:Sapphire oscillator can be used for exciting the sample. Moreover, the dual mode cavity can be used as a streak camera or time-of-flight EELS detector with a dynamic range >104>10^4
    • …
    corecore