697 research outputs found

    Evaluation of parasite antigens in Elisa for the detection of toxoplasma infection in pigs

    Get PDF
    One-third of the human world population is infected with the protozoan parasite Toxoplasma gondii Toxoplasmosis is an old disease but is still very underreported and neglected disease

    Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases

    Get PDF
    Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy

    Implications of movement for species distribution models - rethinking environmental data tools

    Get PDF
    Movement is considered an essential process in shaping the distributions of species. Nevertheless, most species distribution models (SDMs) still focus solely on environment-species relationships to predict the occurrence of species. Furthermore, the currently used indirect estimates of movement allow to assess habitat accessibility, but do not provide an accurate description of movement. Better proxies of movement are needed to assess the dispersal potential of individual species and to gain a more practical insight in the interconnectivity of communities. Telemetry techniques are rapidly evolving and highly capable to provide explicit descriptions of movement, but their usefulness for SDMs will mainly depend on the ability of these models to deal with hitherto unconsidered ecological processes. More specifically, the integration of movement is likely to affect the environmental data requirements as the connection between environmental and biological data is crucial to provide reliable results. Mobility implies the occupancy of a continuum of space, hence an adequate representation of both geographical and environmental space is paramount to study mobile species distributions. In this context, environmental models, remote sensing techniques and animal-borne environmental sensors are discussed as potential techniques to obtain suitable environmental data. In order to provide an in-depth review of the aforementioned methods, we have chosen to use the modelling of fish distributions as a case study. The high mobility of fish and the often highly variable nature of the aquatic environment generally complicate model development, making it an adequate subject for research. Furthermore, insight into the distribution of fish is of great interest for fish stock assessments and water management worldwide, underlining its practical relevance

    Achievements and state of the art of hydrogen fuelled IC engines after twenty years of research at Ghent University

    Get PDF
    Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.Hydrogen could be “the” fuel for the future, not only for fuel cells but certainly for internal combustion engines. The research on hydrogen started at Ghent University in 1990 with the adaptation of a Valmet diesel engine to hydrogen operation (atmospheric, carbureted version) to prove the capability of hydrogen as a fuel for IC engines. Since then several engines were modified for hydrogen use with the state of the art technologies (sequential injection, electronic management units). With European (Craft, Brite) and Belgian grants three buses demonstrated on several levels the application of hydrogen IC engines. At the moment the laboratory test proves an operation with a power output higher than the gasoline engine, with an equal efficiency of the diesel engine and with very low emissions (NOx less than 100 ppm). The interests of the research group of Ghent University was not only for the experimental work, but also the combustion process is simulated (GUEST code). The estimated formula of the laminar flame speed of hydrogen by Verhelst is worldwide used in other research studies. At the moment a doctoral study examines the heat transfer in hydrogen engines, which is so different from the already not very accurate heat transfer models in gasoline and diesel engines. In our laboratory tests, the hydrogen engine is ready for mass production (backfire safe, high power output, high efficiency, very low emissions). But storage on the vehicle recently and infrastructure of the fuel delivery are the bottle-necks for a real implementation of the hydrogen economy. From hydrogen, methanol can be produced on a sustainable way. Methanol is a liquid (no storage problem on het vehicle) and with minor modifications the same infrastructure can be used as for gasoline. Methanol has very good engine characteristics. Will methanol based on hydrogen be then “the” fuel of the future?mp201

    Development and validation of A quasi-dimensional model for (M)Ethanol-Fuelled SI engines

    Get PDF
    RESEARCH OBJECTIVE - The use of methanol and ethanol in spark-ignition engines forms an interesting approach to decarbonizing transport and securing domestic energy supply. Experimental work has produced promising results, however, the full potential of light alcohols in modern engine technology remains to be explored. Today, this can be addressed at low cost using system simulations of the whole engine, provided that the employed models account for the effect of the fuel on engine operation. The goal of current work is to develop an engine cycle model that can accurately predict performance, efficiency, pollutant emissions and knock onset in state-of-the-art neat alcohol engines. METHODOLOGY - Two-zone thermodynamic engine modeling, in combination with 1D gas dynamics, is put forward as a useful tool for cheap and fast optimization of engines. Typically, this model class derives the mass burning rate of fuel from turbulent combustion models. A fundamental building block of turbulent combustion models is an expression for the laminar burning velocity of the fuel-air-residuals mixture at instantaneous cylinder pressure and temperature. This physicochemical property basically groups the contribution of the chemical reactions (of the fuel) to combustion. Consequently, an important part of our study consisted of calculating (using chemical kinetics) and measuring the laminar burning velocity of methanol and ethanol at engine-like conditions. In order to validate the developed engine model, its predictions were compared against a database of experimental results obtained on three different flex-fuel and dedicated alcohol engines. RESULTS - Comparison of the experimental and simulated cylinder, intake and exhaust pressure traces confirmed the predictive power of our engine model for methanol-fuelled engines. A wide variety of engine operating points were accurately reproduced thanks to a new laminar burning velocity correlation, which correctly accounts for changes in pressure, temperature, mixture richness and residual ratio. The Flame Closure Model of Zimont-Lipatnikov emerged as the most widely applicable model from a comparison of several turbulent combustion models. With regard to the gas dynamics it proved necessary to include a fuel puddling submodel to take the cooling effect due to alcohol injection into consideration. LIMITATIONS - The developed model was successfully validated for normal combustion in port-injected neat methanol engines. The validation of the routines for ethanol combustion and engines with direct injection is part of ongoing work. Now that normal combustion can be accurately simulated, further work will look at the prediction of pollutant emissions and knock onset in these engines. NOVELTY - This paper presents the first recent attempt to model the application of neat alcohols in modern and anticipated future engine technologies. Compared to previous work the effects of in-cylinder and mixture conditions on the combustion are more accurately predicted thanks to the inclusion of a new and widely validated laminar burning velocity correlation. In contrast to other studies, the current experimental database also includes measurements on turbocharged, high compression ratio engines with elevated amounts of EGR, which is representative of future dedicated alcohol engines. CONCLUSIONS - The current work focused on adapting the various submodels of quasi-dimensional engine codes to the properties of light alcohols. The developed simulation tools can be used with confidence to optimize current and future engines running on neat methanol and ethanol. This work also forms the starting point for an extension of the modelling concepts to alcohol-gasoline blends, which hold more industrial relevance
    corecore