473 research outputs found
Electrodynamics of superconductors
An alternate set of equations to describe the electrodynamics of
superconductors at a macroscopic level is proposed. These equations resemble
equations originally proposed by the London brothers but later discarded by
them. Unlike the conventional London equations the alternate equations are
relativistically covariant, and they can be understood as arising from the
'rigidity' of the superfluid wave function in a relativistically covariant
microscopic theory. They predict that an internal 'spontaneous' electric field
exists in superconductors, and that externally applied electric fields, both
longitudinal and transverse, are screened over a London penetration length, as
magnetic fields are. The associated longitudinal dielectric function predicts a
much steeper plasmon dispersion relation than the conventional theory, and a
blue shift of the minimum plasmon frequency for small samples. It is argued
that the conventional London equations lead to difficulties that are removed in
the present theory, and that the proposed equations do not contradict any known
experimental facts. Experimental tests are discussed.Comment: Small changes following referee's and editor's comments; to be
published in Phys.Rev.
Applying infrared thermography to soil surface temperature monitoring: Case study of a high-resolution 48 h survey in a vineyard (Anadia, Portugal)
The soil surface albedo decreases with an increasing biochar application rate as a power decay function, but the net impact of biochar application on soil temperature dynamics remains to be clarified. The objective of this study was to assess the potential of infrared thermography (IRT) sensing by monitoring soil surface temperature (SST) with a high spatiotemporal and thermal resolution in a scalable agricultural application. We monitored soil surface temperature (SST) variations over a 48 h period for three treatments in a vineyard: bare soil (plot S), 100% biochar cover (plot B), and biochar-amended topsoil (plot SB). The SST of all plots was monitored at 30 min intervals with a tripod-mounted IR thermal camera. The soil temperature at 10 cm depth in the S and SB plots was monitored continuously with a 5 min resolution probe. Plot B had greater daily SST variations, reached a higher daily temperature peak relative to the other plots, and showed a faster rate of T increase during the day. However, on both days, the SST of plot B dipped below that of the control treatment (plot S) and biochar-amended soil (plot SB) from about 18:00 onward and throughout the night. The diurnal patterns/variations in the IRT-measured SSTs were closely related to those in the soil temperature at a 10 cm depth, confirming that biochar-amended soils showed lower thermal inertia than the unamended soil. The experiment provided interesting insights into SST variations at a local scale. The case study may be further developed using fully automated SST monitoring protocols at a larger scale for a range of environmental and agricultural applications
Identification and in vitro reconstitution of lysosomal neuraminidase from human placenta
Lysosomal neuraminidase from human placenta has been obtained in its active form by association of an inactive neuraminidase polypeptide with β-galactosidase and the protective protein. Using a specific antiserum, we have now identified a 66-kDa protein as the inactive neuraminidase polypeptide. It is specifically recognized on immunoblots only in its nonreduced state, and it coprecipitates with neuraminidase activity. The 66-kDa polypeptide is substantially glycosylated (38-kDa protein core with 7-14 N-linked oligosaccharide chains), a feature characteristic of lysosomal integral membrane proteins. Specific removal of the 66-kDa neuraminidase polypeptide from glycoprotein preparations prevents the generation of neuraminidase activity. Removal of β-galactosidase or destruction of the protective protein also hinders the formation of active neuraminidase. Reconstitution of neuraminidase activity is observed after mixing glycoprotein preparations, depleted in different components of the β-galactosidase-neuraminidase-protective protein complex, indicating that all three components of the complex are required for neuraminidase activity. Association of the neuraminidase polypeptide and the protective protein generates unstables neuraminidase activity, whereas association with β-galactosidase is required for stability.</p
Geometry-dependent electrostatics near contact lines
Long-ranged electrostatic interactions in electrolytes modify their contact
angles on charged substrates in a scale and geometry dependent manner. For
angles measured at scales smaller than the typical Debye screening length, the
wetting geometry near the contact line must be explicitly considered. Using
variational and asymptotic methods, we derive new transcendental equations for
the contact angle that depend on the electrostatic potential only at the three
phase contact line. Analytic expressions are found in certain limits and
compared with predictions for contact angles measured with lower resolution. An
estimate for electrostatic contributions to {\it line} tension is also given.Comment: 3 .eps figures, 5p
Identification and in vitro reconstitution of lysosomal neuraminidase from human placenta
Lysosomal neuraminidase from human placenta has been obtained in its active form by association of an inactive neuraminidase polypeptide with β-galactosidase and the protective protein. Using a specific antiserum, we have now identified a 66-kDa protein as the inactive neuraminidase polypeptide. It is specifically recognized on immunoblots only in its nonreduced state, and it coprecipitates with neuraminidase activity. The 66-kDa polypeptide is substantially glycosylated (38-kDa protein core with 7-14 N-linked oligosaccharide chains), a feature characteristic of lysosomal integral membrane proteins. Specific removal of the 66-kDa neuraminidase polypeptide from glycoprotein preparations prevents the generation of neuraminidase activity. Removal of β-galactosidase or destruction of the protective protein also hinders the formation of active neuraminidase. Reconstitution of neuraminidase activity is observed after mixing glycoprotein preparations, depleted in different components of the β-galactosidase-neuraminidase-protective protein complex, indicating that all three components of the complex are required for neuraminidase activity. Association of the neuraminidase polypeptide and the protective protein generates unstables neuraminidase activity, whereas association with β-galactosidase is required for stability.</p
The MeerKAT Fornax Survey
We present the science case and observations plan of the MeerKAT Fornax
Survey, an HI and radio continuum survey of the Fornax galaxy cluster to be
carried out with the SKA precursor MeerKAT. Fornax is the second most massive
cluster within 20 Mpc and the largest nearby cluster in the southern
hemisphere. Its low X-ray luminosity makes it representative of the environment
where most galaxies live and where substantial galaxy evolution takes place.
Fornax's ongoing growth makes it an excellent laboratory for studying the
assembly of clusters, the physics of gas accretion and stripping in galaxies
falling in the cluster, and the connection between these processes and the
neutral medium in the cosmic web.
We will observe a region of 12 deg reaching a projected distance of 1.5
Mpc from the cluster centre. This will cover a wide range of environment
density out to the outskirts of the cluster, where gas-rich in-falling groups
are found. We will: study the HI morphology of resolved galaxies down to a
column density of a few times 1e+19 cm at a resolution of 1 kpc; measure
the slope of the HI mass function down to M(HI) 5e+5 M(sun); and attempt to
detect HI in the cosmic web reaching a column density of 1e+18 cm at a
resolution of 10 kpc.Comment: Proceedings of Science, "MeerKAT Science: On the Pathway to the SKA",
Stellenbosch, 25-27 May 201
Low-temperature structural model of hcp solid C
We report intermolecular potential-energy calculations for solid C_ and
determine the optimum static orientations of the molecules at low temperature;
we find them to be consistent with the monoclinic structural model proposed by
us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model
indicates that the C_5 axis of the molecule is tilted by an angle 18^o
from the monoclinic b axis in contrast with the molecular orientation proposed
by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5
axis is parallel to the monoclinic b axis. In this calculation we have
incorporated the effective bond charge Coulomb potential together with the
Lennard-Jones potential between the molecule at the origin of the monoclinic
unit cell and its six nearest neighbours, three above and three below. The
minimum energy configuration for the molecular orientations turns out to be at
=18^o, =8^o, and =5^o, where , , and
define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure
The Gas Content in Galactic Disks: Correlation with Kinematics
We consider the relationship between the total HI mass in late-type galaxies
and the kinematic properties of their disks. The mass for galaxies with
a wide variety of properties, from dwarf dIrr galaxies with active star
formation to giant low-brightness galaxies, is shown to correlate with the
product ( is the rotational velocity, and is the radial
photometric disks scale length), which characterizes the specific angular
momentum of the disk. This relationship, along with the anticorrelation between
the relative mass of HI in a galaxy and , can be explained in terms of the
previously made assumption that the gas density in the disks of most galaxies
is maintained at a level close to the threshold (marginal) stability of a
gaseous layer to local gravitational perturbations. In this case, the
regulation mechanism of the star formation rate associated with the growth of
local gravitational instability in the gaseous layer must play a crucial role
in the evolution of the gas content in the galactic disk.Comment: revised version to appear in Astronomy Letters, 8 pages, 5 EPS
figure
Si interstitial contribution of F+ implants in crystalline Si
The F effect in crystalline Si is quantified by monitoring defects and B diffusion in samples implanted with 25 keV F+ and/or 40 keV Si+. We estimate that about +0.4 Si interstitials are generated per implanted F+ ion, in agreement with the value resulting from the net separation of Frenkel pairs. For short annealings, B diffusion is lower when F+ is coimplanted with Si+ than when only Si+ is implanted, while for longer annealings, B diffusion is higher. This is consistent with a lower but longer-lasting Si interstitial supersaturation set by the additional defects generated by the F+ implant
Selective Area Growth of PbTe Nanowire Networks on InP
Hybrid semiconductor–superconductor nanowires are promising candidates as quantum information processing devices. The need for scalability and complex designs calls for the development of selective area growth techniques. Here, the growth of large scale lead telluride (PbTe) networks is introduced by molecular beam epitaxy. The group IV-VI lead-salt semiconductor is an attractive material choice due to its large dielectric constant, strong spin-orbit coupling, and high carrier mobility. A crystal re-orientation process during the initial growth stages leads to single crystalline nanowire networks despite a large lattice mismatch, different crystal structure, and diverging thermal expansion coefficient to the indium phosphide (InP) substrate. The high quality of the resulting material is confirmed by Hall bar measurements, indicating mobilities up to 5600 cm2 (Vs)−1, and Aharonov–Bohm experiments, indicating a low-temperature phase coherence length exceeding 21 µm. Together, these properties show the high potential of the system as a basis for topological networks.</p
- …