We report intermolecular potential-energy calculations for solid C_70 and
determine the optimum static orientations of the molecules at low temperature;
we find them to be consistent with the monoclinic structural model proposed by
us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model
indicates that the C_5 axis of the molecule is tilted by an angle ≈18^o
from the monoclinic b axis in contrast with the molecular orientation proposed
by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5
axis is parallel to the monoclinic b axis. In this calculation we have
incorporated the effective bond charge Coulomb potential together with the
Lennard-Jones potential between the molecule at the origin of the monoclinic
unit cell and its six nearest neighbours, three above and three below. The
minimum energy configuration for the molecular orientations turns out to be at
θ=18^o, ϕ=8^o, and ψ=5^o, where θ, ϕ, and ψ
define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure