200 research outputs found
Incidence and predictors of phantom shocks in implantable cardioverter defibrilator recipients
Background\ud
Implantable cardioverter defibrillators (ICDs) are designed to deliver shocks or antitachycardia pacing (ATP) in the event of ventricular arrhythmias. During follow-up, some ICD recipients experience the sensation of ICD discharge in the absence of an actual discharge (phantom shock). The aim of this study was to evaluate the incidence and predictors of phantom shocks in ICD recipients.\ud
\ud
Methods\ud
Medical records of 629 consecutive patients with ischaemic or dilated cardiomyopathy and prior ICD implantation were studied.\ud
\ud
Results\ud
With a median follow-up of 35 months, phantom shocks were reported by 5.1 % of ICD recipients (5.7 % in the primary prevention group and 3.7 % for the secondary prevention group; p=NS). In the combined group of primary and secondary prevention, there were no significant predictors of the occurrence of phantom shocks. However, in the primary prevention group, phantom shocks were related to a history of atrial fibrillation (p=0.03) and NYHA class <III (p=0.05). In the secondary prevention group, there were no significant predictors for phantom shocks.\ud
\ud
Conclusion\ud
Phantom shocks occur in approximately 5 % of all ICD recipients. In primary prevention patients, a relation with a history of atrial fibrillation and NYHA class <III were significant predictors for the occurrence of phantom shocks. In the secondary prevention patients, no significant predictors were found\u
Recommended from our members
Results from the CERN pilot CLOUD experiment
During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3 s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 _C)
Earthworms Use Odor Cues to Locate and Feed on Microorganisms in Soil
Earthworms are key components of temperate soil ecosystems but key aspects of their ecology remain unexamined. Here we elucidate the role of olfactory cues in earthworm attraction to food sources and document specific chemical cues that attract Eisenia fetida to the soil fungi Geotrichum candidum. Fungi and other microorganisms are major sources of volatile emissions in soil ecosystems as well as primary food sources for earthworms, suggesting the likelihood that earthworms might profitably use olfactory cues to guide foraging behavior. Moreover, previous studies have documented earthworm movement toward microbial food sources. But, the specific olfactory cues responsible for earthworm attraction have not previously been identified. Using olfactometer assays combined with chemical analyses (GC-MS), we documented the attraction of E. fetida individuals to filtrate derived from G. candidum colonies and to two individual compounds tested in isolation: ethyl pentanoate and ethyl hexanoate. Attraction at a distance was observed when barriers prevented the worms from reaching the target stimuli, confirming the role of volatile cues. These findings enhance our understanding of the mechanisms underlying key trophic interactions in soil ecosystems and have potential implications for the extraction and collection of earthworms in vermiculture and other applied activities
Changes in behavioural synchrony during dog-assisted therapy for children with autism spectrum disorder and children with Down syndrome
BACKGROUND: Dog-assisted therapy (DAT) is hypothesized to help children with autism spectrum disorder (ASD) and Down syndrome (DS). METHODS: The present authors compared synchronous movement patterns of these children (n = 10) and their therapy dogs during the first and last session of a DAT programme, and their post-therapy changes in emotional and behavioural problems. RESULTS: The present authors found a significant increase in synchrony between child and therapy dog over time. Exploratory analyses suggest more synchrony between children with ASD and their therapy dogs, compared to the children with DS. CONCLUSIONS: This study is the first to test the synchrony hypothesis, shedding light upon a mechanism that may underlie the effect of DAT and how this may be different for children with ASD and DS
Conserved Odorant-Binding Proteins from Aphids and Eavesdropping Predators
Background: The sesquiterpene (E)-ß-farnesene is the main component of the alarm pheromone system of various aphid species studied to date, including the English grain aphid, Sitobion avenae. Aphid natural enemies, such as the marmalade hoverfly Episyrphus balteatus and the multicolored Asian lady beetle Harmonia axyridis, eavesdrop on aphid chemical communication and utilize (E)-ß-farnesene as a kairomone to localize their immediate or offspring preys. These aphidpredator systems are important models to study how the olfactory systems of distant insect taxa process the same chemical signal. We postulated that odorant-binding proteins (OBPs), which are highly expressed in insect olfactory tissues and involved in the first step of odorant reception, have conserved regions involved in binding (E)-ß-farnesene. Methodology: We cloned OBP genes from the English grain aphid and two major predators of this aphid species. We then expressed these proteins and compare their binding affinities to the alarm pheromone/kairomone. By using a fluorescence reporter, we tested binding of (E)-ß-farnesene and other electrophysiologically and behaviorally active compounds, including a green leaf volatile attractant. Conclusion: We found that OBPs from disparate taxa of aphids and their predators are highly conserved proteins, with apparently no orthologue genes in other insect species. Properly folded, recombinant proteins from the English grain aphid, SaveOBP3, and the marmalade hoverfly, EbalOBP3, specifically bind (E)-ß-farnesene with apparent high affinity. For the firs
DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts
Replication origins in Xenopus egg extracts are located at apparently random sequences but are activated in clusters that fire at different times during S phase under the control of ATR/ATM kinases. We investigated whether chromosomal domains and single sequences replicate at distinct times during S phase in egg extracts. Replication foci were found to progressively appear during early S phase and foci labelled early in one S phase colocalized with those labelled early in the next S phase. However, the distribution of these two early labels did not coincide between single origins or origin clusters on single DNA fibres. The 4 Mb Xenopus rDNA repeat domain was found to replicate later than the rest of the genome and to have a more nuclease-resistant chromatin structure. Replication initiated more frequently in the transcription unit than in the intergenic spacer. These results suggest for the first time that in this embryonic system, where transcription does not occur, replication timing is deterministic at the scale of large chromatin domains (1–5 Mb) but stochastic at the scale of replicons (10 kb) and replicon clusters (50–100 kb)
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
The Patient Deficit Model Overturned: a qualitative study of patients' perceptions of invitation to participate in a randomized controlled trial comparing selective bladder preservation against surgery in muscle invasive bladder cancer (SPARE, CRUK/07/011)
BACKGROUND: Evidence suggests that poor recruitment into clinical trials rests on a patient ‘deficit’ model – an inability to comprehend trial processes. Poor communication has also been cited as a possible barrier to recruitment. A qualitative patient interview study was included within the feasibility stage of a phase III non-inferiority Randomized Controlled Trial (RCT) (SPARE, CRUK/07/011) in muscle invasive bladder cancer. The aim was to illuminate problems in the context of randomization. METHODS: The qualitative study used a ‘Framework Analysis’ that included ‘constant comparison’ in which semi-structured interviews are transcribed, analyzed, compared and contrasted both between and within transcripts. Three researchers coded and interpreted data. RESULTS: Twenty-four patients agreed to enter the interview study; 10 decliners of randomization and 14 accepters, of whom 2 subsequently declined their allocated treatment. The main theme applying to the majority of the sample was confusion and ambiguity. There was little indication that confusion directly impacted on decisions to enter the SPARE trial. However, confusion did appear to impact on ethical considerations surrounding ‘informed consent’, as well as cause a sense of alienation between patients and health personnel. Sub-optimal communication in many guises accounted for the confusion, together with the logistical elements of a trial that involved treatment options delivered in a number of geographical locations. CONCLUSIONS: These data highlight the difficulty of providing balanced and clear trial information within the UK health system, despite best intentions. Involvement of multiple professionals can impact on communication processes with patients who are considering participation in RCTs. Our results led us to question the ‘deficit’ model of patient behavior. It is suggested that health professionals might consider facilitating a context in which patients feel fully included in the trial enterprise and potentially consider alternatives to randomization where complex interventions are being tested. TRIAL REGISTRATION: ISRCTN6112646
Duty, desire or indifference? A qualitative study of patient decisions about recruitment to an epilepsy treatment trial
BACKGROUND: Epilepsy is a common neurological condition, in which drugs are the mainstay of treatment and drugs trials are commonplace. Understanding why patients might or might not opt to participate in epilepsy drug trials is therefore of some importance, particularly at a time of rapid drug development and testing; and the findings may also have wider applicability. This study examined the role of patient perceptions in the decision-making process about recruitment to an RCT (the SANAD Trial) that compared different antiepileptic drug treatments for the management of new-onset seizures and epilepsy. METHODS: In-depth interviews with 23 patients recruited from four study centres. All interviews were tape-recorded and transcribed; the transcripts were analysed thematically using a qualitative data analysis package. RESULTS: Of the nineteen informants who agreed to participate in SANAD, none agreed for purely altruistic reasons. The four informants who declined all did so for very specific reasons of self-interest. Informants' perceptions of the nature of the trial, of the drugs subject to trial, and of their own involvement were all highly influential in their decision-making. Informants either perceived the trial as potentially beneficial or unlikely to be harmful, and so agreed to participate; or as potentially harmful or unlikely to be beneficial and so declined to participate. CONCLUSION: Most patients applied 'weak altruism', while maintaining self-interest. An emphasis on the safety and equivalence of treatments allowed some patients to be indifferent to the question of involvement. There was evidence that some participants were subject to 'therapeutic misconceptions'. The findings highlight the individual nature of trials but nonetheless raise some generic issues in relation to their design and conduct
Mapping targets for small nucleolar RNAs in yeast
Background: Recent analyses implicate changes in the expression of the box C/D class of small nucleolar RNAs (snoRNAs) in several human diseases. Methods: Here we report the identification of potential novel RNA targets for box C/D snoRNAs in budding yeast, using the approach of UV crosslinking and sequencing of hybrids (CLASH) with the snoRNP proteins Nop1, Nop56 and Nop58. We also developed a bioinformatics approach to filter snoRNA-target interactions for bona fide methylation guide interactions. Results: We recovered 241,420 hybrids, out of which 190,597 were classed as reproducible, high energy hybrids. As expected, the majority of snoRNA interactions were with the ribosomal RNAs (rRNAs). Following filtering, 117,047 reproducible hybrids included 51 of the 55 reported rRNA methylation sites. The majority of interactions at methylation sites were predicted to guide methylation. However, competing, potentially regulatory, binding was also identified. In marked contrast, following CLASH performed with the RNA helicase Mtr4 only 7% of snoRNA-rRNA interactions recovered were predicted to guide methylation. We propose that Mtr4 functions in dissociating inappropriate snoRNA-target interactions. Numerous snoRNA-snoRNA interactions were recovered, indicating potential cross regulation. The snoRNAs snR4 and snR45 were recently implicated in site-directed rRNA acetylation, and hybrids were identified adjacent to the acetylation sites. We also identified 1,368 reproducible snoRNA-mRNA interactions, representing 448 sites of interaction involving 39 snoRNAs and 382 mRNAs. Depletion of the snoRNAs U3, U14 or snR4 each altered the levels of numerous mRNAs. Targets identified by CLASH were over-represented among these species, but causality has yet to be established. Conclusions: Systematic mapping of snoRNA-target binding provides a catalogue of high-confidence binding sites and indicates numerous potential regulatory interactions
- …