9 research outputs found

    Genetic Susceptibility to Prostate Cancer

    No full text

    Autosomal dominant inheritance of prostate cancer: A confirmatory study

    No full text
    Objectives. To confirm, in a study of a large, independent cohort of families with prostate cancer, the findings of three segregation analyses that have suggested the existence of an inherited form of prostate cancer with an autosomal dominant inheritance mode. Methods. Between January 1991 and December 1993, 1199 pedigrees were ascertained through single, unrelated, prostate cancer probands who presented for radical prostatectomy at the Division of Urologic Surgery, Washington University Medical Center in St. Louis, Missouri. Maximum likelihood segregation analysis was used to test specifically for mendelian inheritance of prostate cancer. Results. Segregation analyses revealed that the familial aggregation of prostate cancer can be best explained by the autosomal dominant inheritance of a rare (q = 0.0037) high-risk allele. According to the best-fitting autosomal dominant model, 97% of all carriers will be affected by 85 years of age compared with 10% of noncarriers. Furthermore, the autosomal dominant model predicts that the high-risk allele accounts for a large proportion (65%) of all patients diagnosed with prostate cancer before 56 years of age. However, of all prostate cancer cases, a relatively small proportion is inherited (8% by 85 years old). Conclusions. These results are in agreement with earlier reports of segregation analyses of prostate cancer and strengthen the evidence that prostate cancer is inherited in a mendelian fashion within a subset of families. Copyright © 2001 Elsevier Science Inc

    Optical Simulation-Aided Design and Engineering of Monolithic Perovskite/Silicon Tandem Solar Cells

    Get PDF
    Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highlights light management techniques assisted by optical simulation. We first engineered (i)a-Si:H passivating layers for (100)-oriented flat c-Si surfaces and combined them with various (n)a-Si:H, (n)nc-Si:H, and (n)nc-SiOx:H interfacial layers for SHJ bottom-cells. In a symmetrical configuration, a long minority carrier lifetime of 16.9 ms was achieved when combining (i)a-Si:H bilayers with (n)nc-Si:H (extracted at the minority carrier density of 1015 cm–3). The perovskite sub-cell uses a photostable mixed-halide composition and surface passivation strategies to minimize energetic losses at charge-transport interfaces. This allows tandem efficiencies above 23% (a maximum of 24.6%) to be achieved using all three types of (n)-layers. Observations from experimentally prepared devices and optical simulations indicate that both (n)nc-SiOx:H and (n)nc-Si:H are promising for use in high-efficiency tandem solar cells. This is possible due to minimized reflection at the interfaces between the perovskite and SHJ sub-cells by optimized interference effects, demonstrating the applicability of such light management techniques to various tandem structures
    corecore