117 research outputs found

    A framework for dissecting affinities of multidrug efflux transporter AcrB to fluoroquinolones

    Get PDF
    Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps

    Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria

    Get PDF
    Gram-negative bacteria and their complex cell envelope, which comprises an outer membrane and an inner membrane, are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control the cellular uptake of small molecules, including nutrients and antibacterial agents. The relatively slow porin-mediated passive uptake across the outer membrane and active efflux via efflux pumps in the inner membrane creates a permeability barrier. The synergistic action of outer membrane permeability, efflux pump activities and enzymatic degradation efficiently reduces the intracellular concentrations of small molecules and contributes to the emergence of antibiotic resistance. In this Review, we discuss recent advances in our understanding of the molecular and functional roles of general porins in small-molecule translocation in Enterobacteriaceae and consider the crucial contribution of porins in antibiotic resistance

    The p53 Codon 72 Pro/Pro Genotype Identifies Poor-Prognosis Neuroblastoma Patients: Correlation with Reduced Apoptosis and Enhanced Senescence by the p53-72P Isoform.

    Get PDF
    The p53 gene is rarely mutated in neuroblastoma, but codon 72 polymorphism that modulates its proapoptotic activity might influence cancer risk and clinical outcome. We investigated whether this polymorphism affects neuroblastoma risk and disease outcome and assessed the biologic effects of the p53-72R and p53-72P isoforms in p53-null cells. Comparison of 288 healthy subjects and 286 neuroblastoma patients revealed that the p53-72 polymorphism had no significant impact on the risk of developing neuroblastoma; however, patients with the Pro/Pro genotype had a shorter survival than those with the Arg/Arg or the Arg/Pro genotypes even in the stage 3 and 4 subgroup without MYCN amplification. By Cox regression analysis, the p53 Pro/Pro genotype seems to be an independent marker of poor prognosis (hazard ratio = 2.74; 95% confidence interval = 1.14\u20136.55, P = .014) together with clinical stage, MYCN status, and age at diagnosis. In vitro, p53-72P was less effective than p53-72R in inducing apoptosis and inhibiting survival of p53-null LAN-1 cells treated with etoposide, topotecan, or ionizing radiation but not taxol. By contrast, p53-72P was more effective in promoting p21-dependent accelerated senescence, alone or in the presence of etoposide. Thus, the p53-72 Pro/Pro genotype might be a marker of poor outcome independent of MYCN amplification, possibly improving risk stratification. Moreover, the lower apoptosis and the enhanced accelerated senescence by the p53-72P isoform in response to DNA damage suggest that patients with neuroblastoma with the p53-72 Pro/Pro genotype may benefit from therapeutic protocols that do not rely only on cytotoxic drugs that function, in part, through p53 activation

    Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia.

    Get PDF
    Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5ÎĽmol/L) and Stat5b (IC50 = 3.5 ÎĽmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies

    A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis

    Get PDF
    The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism
    • …
    corecore