31 research outputs found

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Untersuchungen zum Einfluss von Naturstoffen auf die Mitochondrienfunktion und die Alterung von "Podospora anserina"

    No full text
    In den letzten Jahren findet die Wirkung von Polyphenolen auf den Alterungsprozess oder zur Behandlung von Krankheiten immer mehr Beachtung. Das Ziel dieser Arbeit war die Aufklärung der Wirkmechanismen der Polyphenole Gossypol, Curcumin und Quercetin, um Hinweise für neue oder verbesserte Therapieansätze zu erhalten. Die dazu durchgeführten Untersuchungen lieferten folgende Ergebnisse: 1. Der Ascomycet "P. anserina" eignet sich als Modellorganismus zur Untersuchung der Wirkmechanismen verschiedener Polyphenole, da die bereits aus der Literatur bekannten Effekte auf das Überleben höherer Organismen auch in "P. anserina" beobachtet wurden. 2. Die Mitochondrienfunktion spielt auf unterschiedliche Art eine Rolle in der Kompensation von Dysfunktionen oder Stressbedingungen in der Zelle und wirkt somit positiv auf die Regulation der Lebensspanne von "P. anserina". In der "PaSod3"-Deletionsmutante wurde eine Verschiebung der mitochondrialen Atmung von einer Komplex I-abhängigen hin zu einer vermehrt Komplex II-abhängigen Atmung festgestellt. Die damit verbundene Abnahme des mitochondrialen Membranpotentials dient neben der bereits bekannten hohen Superoxid-Menge als Signal zur Mitophagie-Induktion. Auch die Anpassung der Mitochondrienfunktion durch die erhöhte Bildung von mtRSCs, wie im Falle von Gossypol oder Quercetin, kann zur Kompensation von Dysfunktionen beitragen bzw. sie abschwächen. 3. Es gibt keinen grundlegenden gemeinsamen Wirkmechanimus der drei untersuchten Polyphenole. Zwar spielt Wasserstoffperoxid bei verschiedenen Stoffen eine Rolle, aber nicht bei allen. Zusätzlich wurde gezeigt, dass Wasserstoffperoxid abhängig von der vorherrschenden Konzentration wirkt und daher auch keine Allgemeingültigkeit des Effektes vorherzusagen ist. In niedrigen Konzentrationen sorgt Wasserstoffperoxid z. B. für eine Induktion der Autophagie und damit einhergehende eine Lebensverlängerung. Im Gegensatz dazu wirken hohe Wasserstoffperoxid-Konzentrationen lebensverkürzend und lösen verschiedene Formen von Zelltod aus. 4. Die Curcumin-vermittelte Langlebigkeit wurde das erste Mal in Verbindung mit einer funktionellen Autophagie gebracht. Im Detail führt die Behandlung mit Curcumin durch eine PaSOD1-abhängige leichte Erhöhung der Wasserstoffperoxid-Menge zu einer Induktion von nicht-selektiver Autophagie. Die induzierte Autophagie ist Ursache der Lebensverlängerung durch Curcumin. 5. Gossypol wirkt in Abhängigkeit der mitochondrialen Permeabilitäts-Transitionspore bzw. von ihrem Regulator Cyclophilin D. Hierbei verstärkt die deutlich erhöhte Wasserstoffperoxid-Menge wahrscheinlich die Induktion von programmiertem Zelltod. Gleichzeitig wird eine cytoprotektive Form von Autophagie und ein scheinbar ATG-unabhängiger Abbau von Mitochondrien induziert. 6. Quercetin wirkt in "P. anserina" abhängig vom Methylierungs-Status. Untersuchungen mit Mutanten der "O"-Methyltransferase PaMTH1 ergaben die Notwendigkeit der Anwesenheit von PaMTH1 für den lebensverlängernden Effekt von Quercetin. Analysen mit dem methylierten Derivat Isorhamnetin verdeutlichten diese Abhängigkeit und zeigten zudem, dass Quercetin sowohl in der methylierten als auch unmethylierten Form Effekte hervorruft. Jedoch sind nur die Effekte des unmethylierten Quercetin unabhängig von der Lebensverlängerung und eher schädlich für die Zelle

    Aging of Podospora anserina Leads to Alterations of OXPHOS and the Induction of Non-Mitochondrial Salvage Pathways

    No full text
    The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging

    Autophagic responses compensate mitochondrial impairments

    No full text
    Mitochondria are the "power plants" of eukaryotic cells involved cellular energy metabolism and lead the generation of most of the cellular "energy currency" adenosine triphosphate (ATP). In addition, they have other crucial functions including the control of programmed cell death, iron/sulfur cluster biogenesis and copper and calcium homeostasis. Mitochondrial dysfunction is deleterious and leads to degeneration, disease and aging. A number of individual pathways are active in keeping mitochondria functional over longer periods of time and thereby have a strong impact on lifespan. These mitochondrial quality control (mtQC) pathways occur at different molecular and cellular levels and are all limited in their capacity. They do not all work at the same time. Some of them are induced when others fail. Currently, the underlying molecular interaction of pathways and their regulation is only initially elucidated. ..

    Quercetin-induced lifespan extension in podospora anserina requires methylation of the flavonoid by the O-methyltransferase PaMTH1

    No full text
    Quercetin is a flavonoid that is ubiquitously found in vegetables and fruits. Like other flavonoids, it is active in balancing cellular reactive oxygen species (ROS) levels and has a cyto-protective function. Previously, a link between ROS balancing, aging, and the activity of O-methyltransferases was reported in different organisms including the aging model Podospora anserina. Here we describe a role of the S-adenosylmethionine-dependent O-methyltransferase PaMTH1 in quercetin-induced lifespan extension. We found that effects of quercetin treatment depend on the methylation state of the flavonoid. Specifically, we observed that quercetin treatment increases the lifespan of the wild type but not of the PaMth1 deletion mutant. The lifespan increasing effect is not associated with effects of quercetin on mitochondrial respiration or ROS levels but linked to the induction of the PaMth1 gene. Overall, our data demonstrate a novel role of O-methyltransferase in quercetin-induced longevity and identify the underlying pathway as part of a network of longevity assurance pathways with the perspective to intervene into mechanisms of biological aging

    Quercetin-Induced Lifespan Extension in Podospora anserina Requires Methylation of the Flavonoid by the O-Methyltransferase PaMTH1

    No full text
    Quercetin is a flavonoid that is ubiquitously found in vegetables and fruits. Like other flavonoids, it is active in balancing cellular reactive oxygen species (ROS) levels and has a cyto-protective function. Previously, a link between ROS balancing, aging, and the activity of O-methyltransferases was reported in different organisms including the aging model Podospora anserina. Here we describe a role of the S-adenosylmethionine-dependent O-methyltransferase PaMTH1 in quercetin-induced lifespan extension. We found that effects of quercetin treatment depend on the methylation state of the flavonoid. Specifically, we observed that quercetin treatment increases the lifespan of the wild type but not of the PaMth1 deletion mutant. The lifespan increasing effect is not associated with effects of quercetin on mitochondrial respiration or ROS levels but linked to the induction of the PaMth1 gene. Overall, our data demonstrate a novel role of O-methyltransferase in quercetin-induced longevity and identify the underlying pathway as part of a network of longevity assurance pathways with the perspective to intervene into mechanisms of biological aging

    Impaired F1Fo-ATP-synthase dimerization leads to the induction of cyclophilin D-mediated autophagy-dependent cell death and accelerated aging

    No full text
    Mitochondrial F1Fo-ATP-synthase dimers play a critical role in shaping and maintenance of mitochondrial ultrastructure. Previous studies have revealed that ablation of the F1Fo-ATP-synthase assembly factor PaATPE of the ascomycete Podospora anserina strongly affects cristae formation, increases hydrogen peroxide levels, impairs mitochondrial function and leads to premature cell death. In the present study, we investigated the underlying mechanistic basis. Compared to the wild type, we observed a slight increase in non-selective and a pronounced increase in mitophagy, the selective vacuolar degradation of mitochondria. This effect depends on the availability of functional cyclophilin D (PaCYPD), the regulator of the mitochondrial permeability transition pore (mPTP). Simultaneous deletion of PaAtpe and PaAtg1, encoding a key component of the autophagy machinery or of PaCypD, led to a reduction of mitophagy and a partial restoration of the wild-type specific lifespan. The same effect was observed in the PaAtpe deletion strain after inhibition of PaCYPD by its specific inhibitor, cyclosporin A. Overall, our data identify autophagy-dependent cell death (ADCD) as part of the cellular response to impaired F1Fo-ATP-synthase dimerization, and emphasize the crucial role of functional mitochondria in aging

    Aging of podospora anserina leads to alterations of OXPHOS and the induction of non-mitochondrial salvage pathways

    No full text
    The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging

    Data_Sheet_1_Quercetin-Induced Lifespan Extension in Podospora anserina Requires Methylation of the Flavonoid by the O-Methyltransferase PaMTH1.pdf

    No full text
    <p>Quercetin is a flavonoid that is ubiquitously found in vegetables and fruits. Like other flavonoids, it is active in balancing cellular reactive oxygen species (ROS) levels and has a cyto-protective function. Previously, a link between ROS balancing, aging, and the activity of O-methyltransferases was reported in different organisms including the aging model Podospora anserina. Here we describe a role of the S-adenosylmethionine-dependent O-methyltransferase PaMTH1 in quercetin-induced lifespan extension. We found that effects of quercetin treatment depend on the methylation state of the flavonoid. Specifically, we observed that quercetin treatment increases the lifespan of the wild type but not of the PaMth1 deletion mutant. The lifespan increasing effect is not associated with effects of quercetin on mitochondrial respiration or ROS levels but linked to the induction of the PaMth1 gene. Overall, our data demonstrate a novel role of O-methyltransferase in quercetin-induced longevity and identify the underlying pathway as part of a network of longevity assurance pathways with the perspective to intervene into mechanisms of biological aging.</p
    corecore